Одночлен и его стандартный вид | теория по математике 🎲 алгебраические выражения

Что такое одночлен?

Одночлен – это простейшее алгебраическое выражение, которое состоит из произведения чисел, переменных и их степеней. Никаких других действий одночлен не имеет. Числовой множитель у одночлена называется коэффициентом.

Пример №1.  Рассмотрим примеры одночленов.

  • 5ху это одночлен с коэффициентом, равным 5
  • -2,76mn2 у этого одночлена коэффициент равен -2,7
  • 15abc здесь коэффициент равен 15
  • ¾xyу этого одночлена коэффициент равен ¾

Стандартный вид одночлена

Чтобы определить коэффициент у одночлена, он должен быть представлен в стандартном виде.

Что такое одночлен стандартного вида?

Одночлен стандартного вида – это одночлен, у которого на первом месте стоит коэффициент, а далее – буквенные множители (переменные).

Такие одночлены приведены в примере №1. Рассмотрим, как привести одночлен к стандартному виду.

Пример №2.

3ху2(-2х3у4)=3(-2)хх3уу4= -6х4у5

Здесь выполняем умножение чисел 3 и (-2), затем степеней х и у (при умножении степеней с одинаковым основанием показатели складываем, а основание оставляем тем же); записываем на первом месте число (коэффициент одночлена), а затем уже степени. Получаем одночлен стандартного вида.

Пример №3.

-12a3b2(-4b7)=48a3b9

Данный ответ получен после умножения чисел и степеней с одинаковым основанием. Записан на первом месте коэффициент 48, а затем остальные множители.

Степень одночлена

Что такое степень одночлена?

Сумму показателей степени переменных называют степенью одночлена.

Рассмотрим, как найти степень одночлена.

Пример №4.

– 113с3х6

У переменных показатели степени равны 3 и 6, складываем их и получаем 9. Значит, степень одночлена равна 9.

Пример №5.

18ху

У этого одночлена степень равна 2, так как у переменных х и у первая степень, складывая 1 и 1, получаем 2.

Текст: Базанов Даниил, 5.1k 👀

Вся теория

Натуральные числаОтношение чиселОбратные числаОбыкновенные дробиДесятичные дробиПеревод обыкновенной дроби в десятичную и наоборотБесконечные дроби и иррациональные числаОкругление чиселДействия с рациональными числамиДействия со степенямиЧисловые и буквенные выражения. Порядок действий.Многочлены. Действия с многочленами.Формулы сокращенного умножения. Разложение на множители.Алгебраические дробиЛинейное уравнениеНеполные квадратные уравненияКвадратное уравнение. Дискриминант. Теорема Виета.Биквадратные уравненияЧисловые неравенства и их свойстваЛинейные неравенства с одной переменнойКвадратные неравенства с одной переменнойМетод интерваловЧисловая последовательностьАрифметическая прогрессия и сумма ее членовГеометрическая прогрессия и сумма ее членовФункция. Зависимые и независимые переменные. Область определения и область значений функции.Свойства функции. Возрастание и убывание, наибольшее и наименьшее значения, нули, промежутки знакопостоянства.Линейная функция, ее свойства и графикПарабола, график, вершина, нули.Гипербола. График функции и свойства.Угол. Биссектриса. Виды углов.Прямая. Параллельные и перпендикулярные прямые.Плоскость. Прямая. Луч. Отрезок. Серединный перпендикуляр.Треугольник. Медиана, биссектриса, высота, средняя линия.Равнобедренный и равносторонний треугольникиПрямоугольный треугольник. Теорема Пифагора.Признаки равенства треугольниковНеравенство треугольникаОкружность и кругВписанные и центральные углы, их свойстваОписанная и вписанная окружностьЧетырехугольникиУмножение и его свойстваШкала. Координатный луч.Многоугольники. Равные фигуры.Прямоугольный параллелепипед и его объем. Пирамида.ВПР по Математике 8 классВПР по математике 7 классВПР по математике 6 классВПР по математике 5 класс