Бесконечные дроби и иррациональные числа | теория по математике 🎲 числа и вычисления

При переводе обыкновенной дроби в десятичную можно получить конечную периодическую или бесконечную десятичные дроби (кроме простой десятичной, разумеется).

Конечная десятичная дробь

Конечная десятичная дробь – десятичная дробь с конечным числом знаков после запятой, то есть когда у аналога обыкновенной дроби числитель без остатка делится на знаменатель.

Пример №1. ¾ — делим 3 на 4 и получаем 0,75.

Пример №2. 31/50  делим 31 на 50 и получаем 0,62.

Пример №3. 3/25 делим 3 на 25 и получаем 0,12.

Периодическая десятичная дробь

Периодическая десятичная дробь – дробь, у которой после запятой (в дробной части) присутствует бесконечный повтор одной цифры или сочетания нескольких одинаковых цифр.

Пример №4. 7/12 При делении 7 на 12 получается 0,5833333…, где постоянно повторяется цифра 3, запись делают следующим образом: 0,58(3); читается эта дробь следующим образом: нуль целых пятьдесят восемь сотых и три в периоде.

Пример №5. 1/11 При делении 1 на 11 получается 0,090909… и так до бесконечности повторяются цифры 0 и 9. Данную дробь записывают в виде 0,(09) и читают как нуль целых и нуль десять в периоде.

Иррациональные числа

 Иррациональные числа — числа, которые не могут быть представлены в виде обыкновенной дроби.

В школьной программе такие числа встречаются чаще всего в виде так называемых «неизвлекаемых корней», чисел  π, e , а в 10-11 классах и логарифмов (так как они связаны со степенями).

Пример №6. √15=3,8729833….

Пример №7. π = 3,1415926535…

Текст: Алла Василевская, 6k 👀

Задание OM0805o

Значение какого из выражений является рациональным числом?

  1. √6-3
  2. √3•√5
  3. (√5)²
  4. (√6-3)²

В данном задании у нас проверяют навыки операций с иррациональными числами.

Разберем каждый вариант ответа в решении:

1) √6-3

√6 само по себе является иррациональным числом, для решения подобных задач достаточно помнить, что рационально извлечь корень можно из квадратов натуральных чисел, например, 4, 9, 16, 25…

При вычитании из иррационального числа любого другого, кроме его же самого, приведет вновь к иррациональному числу, таким образом, в этом варианте получается иррациональное число.

2) √3•√5

При умножении корней, мы можем извлечь корень из произведения подкоренных выражений, то есть:

√3•√5 = √(3•5) = √15

Но √15 является иррациональным, поэтому данный вариант ответа не подходит.

3) (√5)²

При возведении квадратного корня в квадрат, мы получаем просто подкоренное выражение (если уж быть точнее, то подкоренное выражение по модулю, но в случае числа, как в данном варианте, это не имеет значения), поэтому:

(√5)² = 5

Данный вариант ответа нам подходит.

4) (√6-3)²

Данное выражение представляет продолжение 1 пункта, но если √6-3 иррациональное число, то никакими известными нам операциями перевести в рациональное его нельзя.

Ответ: 3

pазбирался: Базанов Даниил | обсудить разбор

Задание OM0803o

Какое из данных чисел является рациональным?

  1. √810
  2. √8,1
  3. √0,81
  4. все эти числа иррациональны

Для решения этой задачи нужно действовать следующим образом:

Сначала разберемся, степень какого числа рассмотрена в данном примере — это число 9, так как его квадрат 81, и это уже чем-то похоже на выражения в ответах. Далее рассмотрим формы числа 9 — это могут быть:

0,9

90

Рассмотри каждое из них:

0,9 = √(0,9)² = √0,81

90 = √(90²) = √8100

Следовательно, число √0,81 является рациональным, остальные же числа

  • √810
  • √8,1

хотя и похожи на форму 9 в квадрате, не являются рациональными.

Таким образом, правильный ответ третий.

Ответ: √0,81

pазбирался: Базанов Даниил | обсудить разбор

Задание OM0802o

Значение какого из данных ниже выражений является наибольшим?

  1. 3√5
  2. 2√11
  3. 2√10
  4. 6,5

Для решения данного задания нужно привести все выражения к общему виду — представить выражения в виде подкоренных выражений:

  • 3√5

Переносим 3 под корень:

3√5 =  √(3² •5) = √(9•5) =  √45

  • 2√11

Переносим 2 под корень:

2√11 = √(2² • 11) = √(4 • 11) =√44

  • 2√10

Переносим 2 под корень:

2√10 = √(2² • 10) = √(4 • 10) =√40

  • 6,5

Возводим 6,5 в квадрат:

6,5 = √(6,5²) = √42,25

3-2

Посмотрим на все получившиеся варианты:

  1. 3√5 =  √45
  2. 2√11 = √44
  3. 2√10 = √40
  4. 6,5 = √42,25

Следовательно, правильный ответ первый.

Ответ: 3√5

pазбирался: Базанов Даниил | обсудить разбор

Задание OM0702o

Какое из данных чисел принадлежит промежутку [ 6 ; 7 ] ?

  1. √6
  2. √7
  3. √38
  4. √50

Для решения этого задания достаточно представлять себе значения чисел меньше и больше заданного, корни которых подлежат вычислению.

  • Рассмотрим √6. √4 — это 2, √9 — это 3, значит √6 лежит в промежутке между 2 и 3
  • Рассмотрим √7. Ситуация аналогична √6. √4 — это 2, √9 — это 3, значит √6 лежит в промежутке между 2 и 3
  • Рассмотрим √38. Ближайшее вычисляемое число меньше 38 — 36, √36 = 6, ближайшее вычисляемое число больше 38 — 49, √49 = 7, значит √38 лежит между 6 и 7
  • Рассмотрим √50. Ближайшее вычисляемое число меньше 50 — 49, √49 = 7, ближайшее вычисляемое число больше 50 — 64, √64 = 8, значит √50 лежит между 7 и 8

Значит, нам подходит третий вариант ответа —  √38.

Ответ: √38

pазбирался: Базанов Даниил | обсудить разбор

Вся теория

Натуральные числаОтношение чиселОбратные числаОбыкновенные дробиДесятичные дробиПеревод обыкновенной дроби в десятичную и наоборотОкругление чиселДействия с рациональными числамиДействия со степенямиЧисловые и буквенные выражения. Порядок действий.Одночлен и его стандартный видМногочлены. Действия с многочленами.Формулы сокращенного умножения. Разложение на множители.Алгебраические дробиЛинейное уравнениеНеполные квадратные уравненияКвадратное уравнение. Дискриминант. Теорема Виета.Биквадратные уравненияЧисловые неравенства и их свойстваЛинейные неравенства с одной переменнойКвадратные неравенства с одной переменнойМетод интерваловЧисловая последовательностьАрифметическая прогрессия и сумма ее членовГеометрическая прогрессия и сумма ее членовФункция. Зависимые и независимые переменные. Область определения и область значений функции.Свойства функции. Возрастание и убывание, наибольшее и наименьшее значения, нули, промежутки знакопостоянства.Линейная функция, ее свойства и графикПарабола, график, вершина, нули.Гипербола. График функции и свойства.Угол. Биссектриса. Виды углов.Прямая. Параллельные и перпендикулярные прямые.Плоскость. Прямая. Луч. Отрезок. Серединный перпендикуляр.Треугольник. Медиана, биссектриса, высота, средняя линия.Равнобедренный и равносторонний треугольникиПрямоугольный треугольник. Теорема Пифагора.Признаки равенства треугольниковНеравенство треугольникаОкружность и кругВписанные и центральные углы, их свойстваОписанная и вписанная окружностьЧетырехугольникиУмножение и его свойстваШкала. Координатный луч.Многоугольники. Равные фигуры.Прямоугольный параллелепипед и его объем. Пирамида.ВПР по Математике 8 классВПР по математике 7 классВПР по математике 6 классВПР по математике 5 класс