Примером такой последовательности может быть ряд чисел 2; 10; 50; 250;…., откуда видно, что каждое последующее больше предыдущего в пять раз, значит, каждый член равен предыдущему, умноженному на одно и то же число 5. Или, например, ряд чисел 20; -2; 0,2; -0,02……, где видно, что каждое последующее умножали на одно и то же число (-0,1).
Так как по определению геометрической прогрессии мы имеем одно и то же число, то это и есть число q. Оно называется «знаменатель» геометрической прогрессии. Он находится путем деления соседних членов – последующего на предыдущий, то есть q=bn+1bn. Знаменатель не может быть равным нулю!
Для того чтобы задать геометрическую прогрессию, надо знать ее первый член и знаменатель. Например, если b1=4, q=3, то получим прогрессию: 4; 12; 36; ….и так далее. Ну, а зная первый член и знаменатель, можно найти любой член геометрической прогрессии: b2=b1q; b3=(b1q)q=b1q2; b4==((b1q)q)q=b1q3. Так можно продолжать и дальше, но из этих записей видно, что можно найти n-ый член геометрической последовательности, если умножить первый член на знаменатель, степень которого на 1 меньше порядкового номера искомого члена, то есть bn=b1 qn−1 . Мы получили формулу n-ого члена геометрической прогрессии.
Рассмотри на примерах применение формулы bn=b1 qn−1 для указанного члена геометрической прогрессии.
Пример №1. Найти четвертый член геометрической прогрессии, если известно, что b1=6, q=3. Составляем формулу для b4:
b4=b1 q4−1=b1 q3
Подставляем в формулу значения, указанные в задании и вычисляем результат: b4=6×33=162.
Найти шестой член геометрической прогрессии 2; -6;……. Здесь для нахождения b6 надо знать знаменатель q. Для его нахождения надо -6 разделить на 2, получим -3, то есть q=-3. Теперь составляем формулу для b6, подставляем значения и вычисляем ответ:
b6=b1 q6−1=b1 q5=2×(−3)5=−486
Другими словами, с помощью данной формулы можно найти неизвестный член геометрической прогрессии, соседние члены которого известны. Рассмотрим применение данного свойства на примерах.
Пример №2. Найти b5, если задана геометрическая прогрессия, в которой b4=32, b6=128. Составляем формулу, подставляем в нее значения и вычисляем:
b25=b5−1×b5+1=b4 ×b6 =32×128=4096
Этим действием мы нашли квадрат пятого члена геометрической прогрессии, поэтому извлекаем квадратный корень из числа 4096 для нахождения значения b5: b5=√4096=64
Найти у, если дана геометрическая прогрессия …..24; у; 96. Видим, что у находится между соседними известными числами 24 и 96. Поэтому, следуя свойству, умножаем данные числа и извлекаем квадратный корень из полученного числа: у=√24×96=√2304=48.
Формула суммы n первых членов геометрической прогрессии
Также есть вторая формула, по которой можно находить сумму нескольких первых членов прогрессии, зная только первый ее член и знаменатель:
Рассмотрим применение данных формул на примере, решив его двумя способами.
Пример №3. Найти сумму пяти первых членов геометрической прогрессии, если известно, что b1=2; b5=162; q=-3.
Способ №1 (первая формула). Составим формулу для нахождения S5:
S5=b5q−b1q−1
Подставим значения b1=2; b5=162 и найдем результат:
S5=162(−3)−2−3−1=−486−2−4=−488−4=122
Способ №2 (вторая формула).
Sn=b1(qn−1)q−1
Для решения нам нужен первый член и знаменатель: b1=2; q=-3. Составим формулу:
S5=b1(q5−1)q−1
Подставим в формулу данные значения и вычислим сумму:
S5=2((−3)5−1)−3−1=2(−243−1)−4=−488−4=122
Таким образом, мы увидели, что у нас получился один и тот же результат 122 в обоих способах решения. Выбор формулы зависит от данных в условии задачи.