Механические волны | теория по физике 🧲 колебания и волны

Отдельные частицы любого тела — твердого, жидкого или газообразного — взаимодействуют друг с другом. Поэтому если какая-то частица начинает колебаться, то благодаря взаимодействию между частицами это движение с некоторой скоростью начинает распространяться во все стороны.

Определение

Волна — колебания, распространяющиеся в пространстве с течение времени.

В воздухе, твердых телах и внутри жидкостей механические волны возникают благодаря силам упругости. Эти силы осуществляют связь между отдельными частями тела. В образовании волн на поверхности воды играют роль сила тяжести и сила поверхностного натяжения. Такие волны позволяют наиболее наглядно рассмотреть главные особенности волнового движения.

Волна на поверхности воды представляет собой бегущие вперед валы округлой формы. Расстояние между валами, которые также называют гребнями, примерно одинаковы. Волны распространяются в среде с определенной скоростью. Так, если чайка летит вперед, а по ней в любой момент времени оказывается один и тот же гребень, то скорость распространения волны можно принять равной скорости полета чайки. Волны на воде наблюдать удобно потому, что скорость их распространения невелика.

Если бросить в воду легкий предмет, он не будет увлекаться волной, а начнет совершать колебания вверх и вниз, оставаясь примерно на одном месте, как поплавок. Это говорит о том, что частицы воды остаются на месте в то время, как волна распространяется на большие расстояния.

Если же резко толкнуть горизонтальную пружину, можно будет наблюдать, как в одних местах она разрежается, в других — уплотняется. Это тоже волна. Видно, что энергия, полученная от толчка руки, переносится через пружину, хотя ее частицы остаются на месте.

Примеры с поплавком на воде и горизонтальной пружиной позволяют сделать вывод, что волна переносит энергию, но не переносит вещество среды.

Виды механических волн

По характеру колебаний частиц среды относительно положения равновесия различают два вида волн:

Определения
  1. Поперечная волна — волна, при которой частицы среды колеблются перпендикулярно направлению распространения этой волны.
  2. Продольная волна — волна, при которой частицы среды колеблются параллельно направлению распространения этой волны.

Волны, распространяющиеся вдоль резинового шнура, являются поперечными (см. рисунок ниже). Чтобы появилась волна, нужно взять конец шнура, прикрепленного к вертикальной опоре, и дернуть его. При этом волна побежит к вертикальной опоре, а сам шнур будет менять свою форму. Каждая частица шнура станет совершать колебания относительно своего неизмененного положения равновесия сверху вниз (перпендикулярно направлению распространения волны).

Рассмотрим поперечные волны подробнее. Каждый участок шнура обладает массой и упругостью. При деформации шнура в любом его сечении появляются силы упругости. Эти силы стремятся возвратить шнур в исходное положение. Благодаря инертности участок колеблющегося шнура не останавливается в положении равновесия, а проходит его, продолжая двигаться до тех пор, пока силы упругости не остановят этот участок в момент максимального отклонения от положения равновесия.

На рисунках а, б, в, г, д и е изображен процесс распространения поперечной волны. На них показаны положения частиц среды в последовательные моменты времени.

Теперь рассмотрим распространение в среде продольной волны. Такую волну можно наблюдать, собрав установку из цепочки массивных шариков, связанных пружинками. Шары подвешены так, чтобы они могли колебаться только вдоль цепочки (см. рисунок ниже).

Если первый шар привести в колебательное движение, то вдоль цепочки побежит продольная волна, состоящая из чередующихся уплотнений и разрежений шаров. Уплотнения и разрежения (см. рисунок ниже) появляются вследствие горизонтальных колебаний шаров у положения равновесия. Волна также распространяется горизонтально.

Физические характеристики волны

Обратимся к рисункам д, е еще раз. Видно, что когда частица 1 находится в положении равновесия и движется вверх, частица 13 тоже находится в положении равновесия и движется вверх. Спустя четверть период частица 1 будет максимально отклонена от положения равновесия, ровно, как и частица 13. Так как частицы 1 и 13 движутся одинаково, говорят, что колебания этих частиц происходят в одинаковых фазах. Расстояние между этими частицами называют длиной волны.

Внимание! В действительности частица 13 отстает по фазе от частицы 1 на 2π. Но поскольку такая разница фаз не приводит к различию в состояниях колеблющихся частиц, можно считать, что частицы колеблются в одинаковых фазах.

Определение

Длина волнырасстояние между двумя ближайшими точками волны, колеблющимися в одинаковых фазах.

Длина волны обозначается как λ (лямбда). Единица измерения длины волны — метр (м).

Согласно рисунку е, в одинаковых фазах колеблются частицы 1 и 13, 2 и 14, 3 и 15, 4 и 16. Поэтому расстояния между этими частицами равно длине волны. Но частицы 1 и 7, находящиеся на расстоянии λ2.., колеблются в противоположных фазах. Посмотрите на рисунок д: когда 1 частица находится в положении равновесия и движется вверх, частица 7 находится в положении равновесия и движется низ. На рисунке е обе частицы максимально отклонены от положения равновесия, но в противоположных направлениях.

Волна распространяется на расстояние λ за время, равное периоду колебаний частиц вещества. Зная расстояние, на которое распространилась волна, и время, в течение которого это распространение происходило, можно найти скорость волны:

v=λT..

Но мы знаем, что период равен величине, обратной частоте колебаний:

T=1ν..

Тогда скорость распространения волны равна:

v=λν

Скорость волны равна произведению длины волны на частоту колебаний.

При распространении волны мы имеем дело с периодичностью двоякого рода:

  1. Во-первых, каждая частица среды совершает периодические колебания во времени. В случае гармонических колебаний (эти колебания происходят по синусоидальному или косинусоидальному закону) частота постоянна и амплитуда одинакова во всех точках. Колебания отличаются только фазами.
  2. Во-вторых, в данный момент времени форма волны повторяется в пространстве через отрезки длиной λ вдоль линии распространения волны. На рисунке ниже показан профиль волны в определенный момент времени (сплошная линия). С течением времени вся эта картина перемещается со скоростью v направо. Спустя промежуток времени ∆t волна будет иметь вид, изображенный на том же рисунке прерывистой линией.

Пример №1. Определите скорость распространение волны на поверхности воды, если расстояние между ее гребнями равно 1 метру. Учитывайте, что мимо наблюдателя за 5 секунд прошло 10 волн.

Обычно под волной на воде люди понимают гребни — частицы воды, максимально отклоненные от положения равновесия. Расстояние между гребнями равно длине волны. Чтобы найти скорость распространения волны, нужно знать частоту колебания молекул воды. Ее можно вычислить по следующей формуле:

ν=nt..

где n — количество «волн», прошедших мимо наблюдателя.

Тогда скорость волны равна:

v=λν=λnt..=1·105..=2 (мс..)

Уравнение бегущей волны

Определение

Бегущая волна — волна, распространяющаяся в пространстве.

Колебания гармонической волны в любой точке происходят по гармоническому закону с одной и той же амплитудой. Найдем уравнение, описывающее колебательный процесс в любой точке пространства при распространении гармонической волны.

Будем рассматривать волну, бегущую по длинному тонкому резиновому шнуру. Ось Ox направим вдоль шнура, а начало отсчета свяжем с левым концом шнура. Смещение любой колеблющейся точки шнура от положения равновесия обозначим буквой s. Для описания волнового процесса необходимо знать значение s в любой точке шнура в любой момент времени. Следовательно, нужно знать вид функции:

s = s(x, t)

Заставим конец шнура (точка х = 0) совершать гармонические колебания с частотой ω. Если начальную фазу колебаний считать равной 0, то колебания этой точки будут происходить по закону:

s = smaxsin ωt

smax — амплитуда колебаний (рис. а).

Колебания распространяются вдоль шнура (оси Ox) со скоростью v и в произвольную точку шнура с координатой х придут спустя время, которое можно определить следующим выражением:

τ=xv..

Эта точка также начнет совершать гармонические колебания с частотой ω, но с запаздыванием на время τ (рис. б). Если пренебречь затуханием волны по мере ее распространения, то колебания в точке х будут происходить с той же амплитудой smax, но с другой фазой:

Уравнение бегущей волны

s=smaxsin [ω(tτ)]=smaxsin [ω(txv..)]

Это уравнение называется уравнением бегущей волны, распространяющейся в положительном направлении оси Ox.

Пример №2. Уравнение бегущей волны имеет вид s(x, t)=0,1sin.(2πtxπ2..). Найдите частоту волны, скорость её распространения и длину.

Запишем уравнение бегущей волны:

s=smaxsin [ω(tτ)]=smaxsin [ω(txv..)]

Сопоставляя эти два уравнения можно определить, что циклическая частота и скорость распространения соответственно равны:

ω=2π (радс..)

v=4 (мс..)

Циклическую частоту также можно рассчитать по формуле:

ω=2πν

Тогда частота волны равна:

ν=ω2π..=2π2π..=1 (Гц)

Тогда длина волны равна:

λ=vν..=41..=4 (м)

Текст: Алиса Никитина, 5.3k 👀

Задание ЕГЭ-Ф-ДВ2023-21

Даны следующие зависимости величин: А) зависимость периода малых свободных колебаний математического маятника от длины нити маятника; Б) зависимость количества теплоты, выделяющегося при конденсации пара, от его массы; В) зависимость силы тока через участок цепи, содержащий резистор, от сопротивления резистора при постоянном напряжении на концах участка. Установите соответствие между этими зависимостями и видами графиков, обозначенных цифрами 1–5. Для каждой зависимости А–В подберите соответствующий вид графика и запишите в таблицу выбранные цифры под соответствующими буквами. Цифры в ответе могут повторяться.

Алгоритм решения:

1.Установить, как период малых свободных колебаний математического маятника зависит от длины нити. Выбрать номер подходящего под эту зависимость графика.
2.Установить, как количество теплоты, выделяющееся при конденсации пара, зависит от его массы. Подобрать соответствующий график.
3.Установить, как сила тока на участке цепи с резистором зависит от сопротивления резистора при постоянном напряжении на концах участка. Выбрать соответствующий график.
4.Записать ответ в виде последовательности цифр выбранных графиков в порядке возрастания.

Решение:

Период колебаний математического маятника определяется формулой:

Видно, что период колебаний прямо пропорционален корню из длины нити математического маятника. Следовательно, графиком его зависимости от длины нити является горизонтально расположенная полупарабола — как на графике 1.

Количество теплоты, выделяющееся при конденсации пара, определяется формулой:

Q=Lm

Следовательно, между количеством теплоты, выделяющимся при конденсации пара, и массой этого пара существует прямо пропорциональная связь. Поэтому график зависимости выглядит как прямая, выходящая из начала координат — как на графике 3.

Сила тока на участке цепи с резистором определяется законом Ома:

Следовательно, между силой тока и сопротивлением существует обратно пропорциональная связь. Графиком такой зависимости является гипербола — как на графике 5.

Следовательно, правильная последовательность цифр в ответе — 135.

Ответ: 135

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18242

На рисунке показан профиль бегущей волны в некоторый момент времени. Разность фаз колебаний точек 1 и 5 равна

Ответ:

а) π/3

б) π/2

в) π

г) 2π


Алгоритм решения

  1. Определить характер движения указанных точек.
  2. По характеру движения точек определить их разность фаз.

Решение

Точки 1 и 5 соответствуют максимальной амплитуде колебаний. В этот момент они меняют направление движения (до этого двигались вверх, теперь меняют направление в противоположную сторону). Поскольку точки 1 и 5 движутся одинаково, можно считать, что они колеблются в одинаковых фазах. Это возможно, если разность фаз кратна 2π.

Ответ: г

pазбирался: Алиса Никитина | обсудить разбор

Задание EF22628

Какова скорость звуковых волн в среде, если при частоте 400 Гц длина волны λ = 4 м?


Алгоритм решения

1.Записать исходные данные.
2.Записать формулу, которая связывает скорость волны с ее частотой и длиной.
3.Выполнить решение задачи в общем виде.
4.Подставить известные данные и выполнить вычисления.

Решение

Запишем исходные данные:

 Частота звуковой волны: ν = 400 Гц.
 Длина волны: λ = 4 м.

Скорость звука — это отношение длины волны к ее периоду. Но период — это обратная величина частоте. Следовательно, скорость звука — есть произведение длины волны на частоту:

v=λν=4·400=1600 (мс..)

Ответ: 1600

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18803

На расстоянии 510 м от наблюдателя рабочие вбивают сваи с помощью копра. Какое время пройдёт от момента, когда наблюдатель увидит удар копра, до момента, когда он услышит звук удара? Скорость звука в воздухе равна 340 м/с.


Алгоритм решения

1.Записать исходные данные.
2.Выполнить решение задачи в общем виде.
3.Подставить известные данные и выполнить вычисления.

Решение

Запишем исходные данные:

 Скорость распространения звука в воздухе: v = 340 м/с.
 Расстояние наблюдателя до источника звука: s = 510 м.

Звук от удара проделает путь, равный одинарному расстоянию от наблюдателя до источника звука. Следовательно, для нахождения времени, через которое наблюдатель услышит звук, нужно разделить этот путь на скорость звука в воздухе:

t=sv..=510340..=1,5 (с)

Ответ: 1,5

pазбирался: Алиса Никитина | обсудить разбор

ЕГЭ по физике

Вся теория

Механическое движение и его характеристикиРавномерное прямолинейное движениеОтносительность механического движенияНеравномерное движение и средняя скоростьУскорение при равноускоренном прямолинейном движенииСкорость при равноускоренном прямолинейном движенииПеремещение и путь при равноускоренном прямолинейном движенииУравнение координаты при равноускоренном прямолинейном движенииДвижение тела с ускорением свободного паденияДвижение тела, брошенного горизонтальноДвижение тела, брошенного под углом к горизонтуДвижение по окружности с постоянной по модулю скоростьюЗаконы Ньютона. Динамика.Гравитационные силы. Закон всемирного тяготения.Сила упругости и закон ГукаСила тренияВес телаПрименение законов НьютонаДвижение связанных телДинамика движения по окружности с постоянной по модулю скоростьюИмпульс тела, закон сохранения импульсаМеханическая работа и мощностьМеханическая энергия и ее видыЗакон сохранения механической энергииПрименение закона сохранения энергииМомент силы и правило моментовПравило моментов при решении задачДавление твердого телаДавление в жидкостях и газах. Закон Паскаля.Сообщающиеся сосудыАрхимедова силаОсновные положения МКТ и агрегатные состояния веществаОсновное уравнение МКТ идеального газаУравнение состояния идеального газаОбъединенный газовый закон и изопроцессыЗакон ДальтонаИспарение и конденсация, влажность воздухаВнутренняя энергия вещества и способы ее измененияФазовые переходы и уравнение теплового балансаВнутренняя энергия и работа идеального газаПервое начало термодинамикиТепловые машины и второе начало термодинамикиЭлектрический заряд. Закон КулонаЭлектрическое поле и его характеристикиЭлектростатическое поле точечного заряда и заряженной сферыПринцип суперпозиции сил и полейОднородное электростатическое поле и его работаКонденсаторыЭлектрический ток и закон ОмаАмперметр и вольтметр. Правила включения.Последовательное и параллельное соединениеПолная цепьРабота и мощность электрического токаЭлектрический ток в жидкостях, в полупроводниках, в вакууме, в газахМагнитное поле и его характеристикиПринцип суперпозиции магнитных полейСила АмпераСила ЛоренцаЭлектромагнитная индукция и магнитный потокПравило ЛенцаЗакон электромагнитной индукцииСамоиндукцияЭнергия магнитного поля токаМеханические колебанияГармонические колебанияЭлектромагнитные колебанияПеременный электрический токКонденсатор, катушка и резонанс в цепи переменного токаМеханические волны в сплошных средах. Звук.Электромагнитные волныCвет. Скорость света. Элементы теории относительности.Отражение и преломление света. Законы геометрической оптики.Линза. Виды линз. Фокусное расстояние.Построение изображения в линзеФормула тонкой линзыДисперсия светаИнтерференция светаДифракция светаЛинейчатые спектрыФотоэффектФотоныПланетарная модель атомаПостулаты БораРадиоактивностьНуклонная модель атомаЯдерные реакцииЭлементы астрофизики