Закон электромагнитной индукции | теория по физике 🧲 магнетизм

Магнитный поток наглядно истолковывается как число линий магнитной индукции, пронизывающих поверхность площадью S. Поэтому скорость изменения этого числа есть не что иное, как скорость изменения магнитного потока.

Если за малое время ∆t магнитный поток поменялся на ∆Ф, то скорость изменения магнитного потока равна ΔΦΔt... Поэтому утверждение, которое вытекает непосредственно из опыта, можно сформулировать так:

Сила индукционного тока пропорциональная скорости изменения магнитного потока через поверхность, ограниченную контуром:

Ii~ΔΦΔt.

Известно, что в цепи появляется электрический ток в том случае, когда на свободные заряды проводника действуют сторонние силы. Работу этих сил при перемещении единичного положительного заряда вдоль замкнутого контура называют электродвижущей силой. Следовательно, при изменении магнитного потока через поверхность, ограниченную контуров, появляются сторонние силы, действие которых характеризуется ЭДС, называемой ЭДС индукции. Обозначают ее как εi.

Согласно закону Ома для замкнутой цепи:

Ii=εiR..

Сопротивление проводника не зависит от изменения магнитного потока. Следовательно, сила индукционного тока пропорциональна скорости изменения магнитного потока только потому, что ЭДС индукции тоже пропорциональна этой скорости изменения потока.

Закон электромагнитной индукции

ЭДС индукции в замкнутом контуре равна по модулю скорости изменения магнитного потока через поверхность, ограниченную контуром.

εi=ΔΦΔt..

Закон электромагнитной индукции формулируется именно для ЭДС, а не для силы тока. При такой формулировке закон выражает сущность явления, не зависящую от свойств проводников, в которых возникает индукционный ток.

Определение знака ЭДС индукции

На рисунке изображен замкнутый контур. Будем считать положительным направление обхода контура против часовой стрелки. Нормаль n к контуру образует правый винт с направлением обхода.

Пусть магнитная индукция B внешнего магнитного поля направлена вдоль нормали к контуру и возрастает со временем. Тогда Φ>0 и ΔΦΔt..>0. Согласно правилу Ленца индукционный ток создает магнитный поток Φ<0. Линии магнитной индукции B’ магнитного поля индукционного тока изображены черным цветом. Следовательно, индукционный ток Ii согласно правилу буравчика направлен по часовой стрелке (против направления положительного обхода) и ЭДС индукции отрицательна. Поэтому в законе электромагнитной индукции должен стоять знак «–», указывающий на то, что εi и ΔΦΔt.. имеют разные знаки:

εi=ΔΦΔt..

Пример №1. Магнитный поток через контур проводника сопротивлением 3∙10–2 Ом за 2 с изменился на 1,2∙10–2 Вб. Найдите силу тока в проводнике, если изменение потока происходило равномерно.

Известно, что:

Ii=εiR..

εi=ΔΦΔt..

Следовательно:

ЭДС индукции в движущихся проводниках

Электроны в неподвижном проводнике приводятся в движение электрическим полем, и это поле порождается переменным магнитным полем. Следовательно, изменяясь во времени, магнитное поле порождает электрическое поле. Но если проводник движется в постоянном во времени магнитном поле, то ЭДС индукции в проводнике обусловлена не вихревым электрическим полем, которое в этом случае не может возникнуть, а другой причиной.

При движении проводника его свободные заряды движутся вместе с ним. Поэтому на заряды со стороны магнитного поля действует сила Лоренца. Она и вызывает перемещение зарядов внутри проводника. ЭДС индукции, следовательно, имеет магнитное происхождение.

Вычислим ЭДС индукции, возникающую в проводнике, движущемся в однородном магнитном поле (см. рисунок). Пусть сторона контура MN длиной l скользит с постоянной скоростью v вдоль сторон NC и MD, оставаясь все это время параллельной стороне CD. Вектор магнитной индукции B однородного поля перпендикулярен проводнику и составляет угол α с направлением его скорости.

Сила, с которой магнитное поле действует на движущуюся заряженную частицу, равна по модулю:

FL=|q|vBsin.α

Направлена эта сила вдоль проводника MN. Работа силы Лоренца на пути l положительна и составляет:

A=FLl=|q|vBlsin.α

Внимание!

Формула выше определяет неполную работу силы Лоренца. Кроме силы Лоренца имеется составляющая силы Лоренца, направленная против скорости проводника v. Такая составляющая тормозит проводник и совершает отрицательную работу. В результате полная работа силы Лоренца оказывается равной нулю.

Электродвижущая сила индукции в проводнике MN равна по определению отношению работы по перемещению заряда q к этому заряду:

εi=A|q|..=vBlsin.α

Эта формула справедлива для любого проводника длиной l, движущегося со скоростью v в однородном магнитном поле.

В других проводниках контура ЭДС равна нулю, так как проводники неподвижны. Следовательно, ЭДС во всем контуре MNCD равна εi и остается неизменной, если скорость движения v постоянна. Электрический ток при этом будет увеличиваться, так как при смещении проводника MN вправо уменьшается общее сопротивление контура.

С другой стороны, ЭДС индукции можно вычислить с помощью закона электромагнитной индукции. Магнитный поток через контур MNCD равен:

Φ=BScos.(90°α)=BSsin.α

угол 90°α представляет собой угол между векторами B и нормалью n к поверхности контура, а S — площадь контура MNCD. Если считать, что в начальный момент времени t=0 проводник MN находится на расстоянии NC от проводника CD, то при перемещении проводника площадь S изменяется со временем следующим образом:

S=l(NCvt)

За время ∆t площадь контура меняется на ΔS=lvΔt. Знак «минус» указывает на то, что она уменьшается. Изменение магнитного потока за это время равно:

ΔΦ=BvlΔtsin.α

Следовательно:

εi=ΔΦΔt..=Bvlsin.α

Если весь контур MNCD движется в однородном магнитном поле, сохраняя свою ориентацию по отношению к вектору B, то ЭДС индукции в контуре будет равна нулю, так как поток Φ через поверхность, ограниченную контуром, не меняется. Объяснить это можно так. При движении контура в проводниках MN и CD возникают силы, действующие на электроны в направлениях от N к M и от C к D. Суммарная работа этих сил при обходе контура по часовой стрелке или против нее равна нулю.

Пример №2. Проводник длиной 50 см движется в однородном магнитном поле со скоростью 4 м/с перпендикулярно силовым линиям. Найдите разность потенциалов, возникающую на концах проводника, если вектор магнитной индукции 8 мТл.

50 см = 0,5 м

8 мТл = 8∙10–3 Тл

Так как проводник движется перпендикулярно силовым линиям, то угол α равен 90 градусам, а синус прямого угла равен единице. Поэтому:

εi=Bvlsin.α=8·103·4·0,5·1=16·103 (В)

Текст: Алиса Никитина, 7.6k 👀

Задание ЕГЭ-Ф-ДВ2023-15

По гладким параллельным горизонтальным проводящим рельсам, замкнутым на лампочку накаливания, перемещают лёгкий тонкий проводник. Образовавшийся контур KLMN находится в однородном вертикальном магнитном поле с индукцией B (рис. а). При движении проводника площадь контура изменяется так, как указано на графике (рис. б). Выберите все верные утверждения, соответствующие приведённым данным и описанию опыта.
  1. В течение первых 6 с индукционный ток течёт через лампочку непрерывно.
  2. В интервале времени от 0 до 4 с лампочка горит наиболее ярко.
  3. В момент времени t = 2 с сила Ампера, действующая на проводник, направлена влево.
  4. Максимальная ЭДС наводится в контуре в интервале времени от 4 до 8 с.
  5. Индукционный ток в интервале времени от 6 до 12 с течёт в одном направлении.

Алгоритм решения:

1.Определить истинность 1 утверждения. Для этого нужно установить характер изменения индукционного тока в течение первых 6 с.
2.Определить истинность 2 утверждения. Для этого необходимо установить, от чего зависит яркость лампочки, и насколько яркой была лампочка в течение первых 4 с.
3.Определить истинность 3 утверждения. Для этого нужно определить направление силы Ампера в момент времени t = 2 с и сравнить ее с предложенным направлением.
4.Определить истинность 4 утверждения. Для этого необходимо установить, когда в контуре ЭДС была максимальной. Совпадает ли указанное время с реальным.
5.Определить истинность 5 утверждения. Для этого нужно установить, менял ли направление индукционный ток в период с 6 по 12 с.
6.Записать последовательность номеров верных утверждений.

Решение:

Проверим истинность 1 утверждения, согласно которому в течение первых 6 с индукционный ток течёт через лампочку непрерывно. Запишем закон электромагнитной индукции:

Сила индукционного тока пропорциональна скорости изменения магнитного потока через поверхность, ограниченную контуром.

Магнитный поток определяется формулой:

Φ=BScosα

Следовательно:

Когда изменяется площадь контура, течет индукционный ток. Однако согласно рисунку видно, что в течение первых 4 секунд площадь контура не изменялась. Следовательно, индукционного тока не было. Потому утверждение 1 неверно.

Проверим истинность 2 утверждения, согласно которому в интервале времени от 0 до 4 с лампочка горит наиболее ярко. Выше мы уже установили, что тока в контуре в этот период времени не было. Поэтому лампочка не могла гореть вообще. Следовательно, утверждение 2 неверно.

Проверим истинность 3 утверждения, согласно которому в момент времени t = 2 с сила Ампера, действующая на проводник, была направлена влево. Однако это не так, поскольку в этот момент времени тока в проводнике не было — ведь площадь контура, а соответственно и магнитный поток, который его пронизывает, не менялись. А сила Ампера действует на проводник с током. Следовательно, утверждение 3 неверно.

Проверим истинность 4 утверждения, согласно которому максимальная ЭДС наводится в контуре в интервале времени от 4 до 8 с. ЭДС индукции в замкнутом контуре равна по модулю скорости изменения магнитного потока через поверхность, ограниченную контуром:

Скорость изменения магнитного потока через поверхность, ограниченную контуром, тем выше, чем круче график изменения площади этого контура. В период времени с 4 до 8 с график наиболее крутой. Следовательно, ЭДС в этот промежуток времени максимальна. Утверждение 4 верно.

Проверим истинность 5 утверждения, согласно которому индукционный ток в интервале времени от 6 до 12 с течёт в одном направлении. Направление индукционного тока зависит от того, как изменяется площадь — увеличивается или уменьшается. Так как в течение указанного промежутка времени площадь только уменьшалась, направление индукционного тока оставалось неименным. Следовательно, утверждение 5 верно.

Записываем последовательность номеров ответов: 45.

Ответ: 45

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17754

В заштрихованной области на рисунке действует однородное магнитное поле, направленное перпендикулярно плоскости рисунка, В = 0,1 Тл. Проволочную квадратную рамку сопротивлением R=10Ом и стороной l=10см перемещают в плоскости рисунка поступательно со скоростью υ=1м/с. Чему равен индукционный ток в рамке в состоянии 1?

Ответ:

а) 1 мА

б) 5 мА

в) 10 мА

г) 20 мА


Алгоритм решения

1.Записать исходные данные и перевести единицы измерения величин в СИ.
2.Записать формулу для определения величины индукционного тока.
3.Записать закон электромагнитной индукции для движущихся проводников.
4.Выполнить решение в общем виде.
5.Подставить известные данные и вычислить искомую величину.

Решения

Запишем исходные данные:

 Модуль вектора магнитной индукции однородного магнитного поля: B = 0,1 Тл.
 Сопротивление внутри квадратной проволочной рамки: R = 10 Ом.
 Сторона рамки: l = 10 см.
 Скорость перемещения рамки: v = 1 м/с.

10 см = 0,1 м

Индукционный ток, возникающий в рамке, определяется по формуле:

Ii=εiR..

Закон электромагнитной индукции для движущихся проводников:

εi=vBlsin.α

Отсюда индукционный ток равен:

Ii=vBlsin.αR..

На рисунке вектор магнитной индукции направлен в сторону от наблюдателя. Следовательно, угол между направлением движения рамки и вектором магнитной индукции равен 90 градусам. А синус прямого угла равен единице. Тогда:

Ii=vBlsin.90°R..=1·0,1·0,1·110..=0,001 (А)=1 (мА)

Ответ: а

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17970

При вращении в однородном магнитном поле плоскости металлического кольца из тонкой проволоки вокруг оси, перпендикулярной линиям поля, максимальная сила индукционного тока, возникающего в кольце, равна I1. Чему будет равна максимальная сила индукционного тока I2 в этом кольце при уменьшении скорости вращения кольца в 2 раза?

Ответ:

а) I2 = 2I1

б) I2 = I1

в) I2 = 0,5I1

г) I2 = 4I1


Алгоритм решения

1.Записать закон электромагнитной индукции.
2.Установить зависимость между величиной индукционного тока и скоростью вращения рамки.
3.Определить, как изменится величина индукционного тока в кольце при уменьшении скорости ее вращения.

Решение

Запишем формулу закона электромагнитной индукции:

εi=ΔΦΔt..

Известно, что отношение изменения магнитного потока ко времени его изменения — это величина, характеризующая скорость этого изменения. Если кольцо в однородном магнитном поле вращать медленнее, то и магнитный поток начнет менять медленнее. Так как ЭДС индукции прямо пропорционально зависит от скорости изменения магнитного потока, то при уменьшении скорости вращения кольца в 2 раза она также уменьшится вдвое.

Также известно, что индукционный ток в рамке определяется формулой:

Ii=εiR..

Видно, что индукционный ток и ЭДС индукции — прямо пропорциональные величины. Следовательно, при уменьшении ЭДС индукции вдвое сила индукционного тока тоже уменьшится в 2 раза. Отсюда следует, что I2 = 0,5I1.

Ответ: в

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18860

По горизонтально расположенным шероховатым рельсам с пренебрежимо малым сопротивлением могут скользить два одинаковых стержня массой m = 100 г и сопротивлением R = 0,1 Ом каждый. Расстояние между рельсами l = 10 см, а коэффициент трения между стержнями и рельсами μ = 0,1  Рельсы со стержнями находятся в однородном вертикальном магнитном поле с индукцией B = 1 Тл (см. рисунок). Под действием горизонтальной силы, действующей на первый стержень вдоль рельс, оба стержня движутся поступательно равномерно с разными скоростями. Какова скорость движения первого стержня относительно второго? Самоиндукцией контура пренебречь. Ответ записать в системе СИ.


Алгоритм решения

1.Записать исходные данные и перевести единицы измерения в СИ.
2.Записать закон электромагнитной индукции для двигающихся стержней.
3.Выполнить решение задачи в общем виде.
4.Подставить неизвестные данные и вычислить искомую величину.

Решение

Запишем исходные данные:

 Масса стержней: m1=m2=m=100 г.
 Сопротивление стержней: R1=R2=R=0,1 Ом.
 Расстояние между рельсами: l = 10 см.
 Коэффициент трения между стержнями и рельсами: μ = 0,1.
 Модуль вектора магнитной индукции магнитного поля: B = 1 Тл.
 Угол между вектором магнитной индукцией и вектором скорости стержней: α = 90 градусов (синус прямого угла равен «1»).

100 г = 0,1 кг

10 см = 0,1 м

Когда под действием некой силы начинается двигаться первый стержень, магнитный поток, пронизывающий контур, образованные проводящими рельсами и двумя стержнями, меняется. Это приводит к возникновению в этом контуре электродвижущей силы, которую можно определить с помощью закона электромагнитной индукции для двигающихся стержней:

εi=vBlsin.α

Причем v — это разность скоростей стержней (v2 – v1), которая характеризует скорость изменения площади проводящего контура.

Индукционный ток, возникающей в этом контуре, можно выразить, используя закон Ома:

εi=IRк

где Rк — сопротивление контура. Так как стержни соединяются последовательно, и их сопротивления равны R, а сопротивление рельсов ничтожно мало, сопротивление контура равно:

Rк=2R

Отсюда закон Ома принимает вид:

εi=2IR

Тогда ток в контуре равен:

I=εi2R..=vBlsin.α2R..

С одной стороны на стержни действует сила Ампера, с другой — сила трения, возникающего между ними и рельсами. Так как стержни движутся равномерно, равнодействующая сил, приложенных к ним, равна нулю. Следовательно, сила трения и сила Ампера компенсируют друг друга (их модули равны):

Fтр=FА

μmg=BIlsin.α

Подставим сюда выражение, полученное для силы тока в контуре:

μmg=BvBlsin.α2R..lsin.α=vB2l2sin2.α2R..

Отсюда скорость равна:

v=2μmgRB2l2sin2.α..

Так как синус угла равен «1»:

Ответ: 2

pазбирался: Алиса Никитина | обсудить разбор

ЕГЭ по физике

Вся теория

Механическое движение и его характеристикиРавномерное прямолинейное движениеОтносительность механического движенияНеравномерное движение и средняя скоростьУскорение при равноускоренном прямолинейном движенииСкорость при равноускоренном прямолинейном движенииПеремещение и путь при равноускоренном прямолинейном движенииУравнение координаты при равноускоренном прямолинейном движенииДвижение тела с ускорением свободного паденияДвижение тела, брошенного горизонтальноДвижение тела, брошенного под углом к горизонтуДвижение по окружности с постоянной по модулю скоростьюЗаконы Ньютона. Динамика.Гравитационные силы. Закон всемирного тяготения.Сила упругости и закон ГукаСила тренияВес телаПрименение законов НьютонаДвижение связанных телДинамика движения по окружности с постоянной по модулю скоростьюИмпульс тела, закон сохранения импульсаМеханическая работа и мощностьМеханическая энергия и ее видыЗакон сохранения механической энергииПрименение закона сохранения энергииМомент силы и правило моментовПравило моментов при решении задачДавление твердого телаДавление в жидкостях и газах. Закон Паскаля.Сообщающиеся сосудыАрхимедова силаОсновные положения МКТ и агрегатные состояния веществаОсновное уравнение МКТ идеального газаУравнение состояния идеального газаОбъединенный газовый закон и изопроцессыЗакон ДальтонаИспарение и конденсация, влажность воздухаВнутренняя энергия вещества и способы ее измененияФазовые переходы и уравнение теплового балансаВнутренняя энергия и работа идеального газаПервое начало термодинамикиТепловые машины и второе начало термодинамикиЭлектрический заряд. Закон КулонаЭлектрическое поле и его характеристикиЭлектростатическое поле точечного заряда и заряженной сферыПринцип суперпозиции сил и полейОднородное электростатическое поле и его работаКонденсаторыЭлектрический ток и закон ОмаАмперметр и вольтметр. Правила включения.Последовательное и параллельное соединениеПолная цепьРабота и мощность электрического токаЭлектрический ток в жидкостях, в полупроводниках, в вакууме, в газахМагнитное поле и его характеристикиПринцип суперпозиции магнитных полейСила АмпераСила ЛоренцаЭлектромагнитная индукция и магнитный потокПравило ЛенцаСамоиндукцияЭнергия магнитного поля токаМеханические колебанияГармонические колебанияЭлектромагнитные колебанияПеременный электрический токКонденсатор, катушка и резонанс в цепи переменного токаМеханические волныМеханические волны в сплошных средах. Звук.Электромагнитные волныCвет. Скорость света. Элементы теории относительности.Отражение и преломление света. Законы геометрической оптики.Линза. Виды линз. Фокусное расстояние.Построение изображения в линзеФормула тонкой линзыДисперсия светаИнтерференция светаДифракция светаЛинейчатые спектрыФотоэффектФотоныПланетарная модель атомаПостулаты БораРадиоактивностьНуклонная модель атомаЯдерные реакцииЭлементы астрофизики