Закон Архимеда
Частные случаи определения архимедовой силы
Полное погружение |
|
Архимедова сила равна произведению плотности жидкости, объема тела и ускорения свободного падения: FA = ρжVтg Vт — объем погруженного в жидкость тела. |
|
Неполное погружение |
|
Архимедова сила равна произведению плотности жидкости, объема погруженной части тела и ускорения свободного падения: FA = ρжVп.ч.g Vп.ч. — объем погруженной в жидкость части тела. |
Внимание! Если тело погружено в газ, то в формуле нужно использовать плотность этого газа.
Пример №1. При взвешивании груза в воздухе показание динамометра равно 1 Н. При опускании груза в воду показание динамометра уменьшается до 0,6 Н. Найдите значение выталкивающей силы.
Выталкивающая сила равна разности веса тела в воздухе и веса тело в воде. Следовательно:
FA = Pвозд – Pж = 1 – 0,6 = 0,4 (Н)
Воздухоплавание
Подъемной силой воздушного шара служит архимедова сила, равная:
FA = ρвоздVшg
Подъемной силе противостоят сила тяжести и сила сопротивления воздуха:
Fтяж = (Mшара + mгаза + mкорз + mгруза)g
Fсопр
Управление шаром:
- чтобы взлететь, шар заполняют нагретым воздухом или газом, плотность которого меньше плотности окружающего воздуха;
- чтобы увеличить высоту полета, с шара сбрасывают балласт;
- чтобы спуститься на землю, газ охлаждают.
Пример №2. Аэростат объемом 1000 м3 заполнен гелием. Плотность гелия 0,18 кг/м3, плотность воздуха 1,29 кг/м3. Какая выталкивающая сила действует на аэростат?
Выталкивающая сила зависит только от плотности окружающей среды и объема погруженного в него тела. Так как аэростат погружен в воздух полностью:
FA = ρвVтg = 1,29∙1000∙10 = 12,9 (кН)
Архимедова сила и законы Ньютона
Если тело полностью погружено в жидкость (или газ):
- Архимедова сила равна: FA = ρжVтg.
- Сила тяжести, действующая на тело: Fтяж = mg = ρтVтg.
Частный случай
Определить минимальную массу груза, который следует положить на плоскую однородную льдину площадью S, чтобы она полностью погрузилась в воду. Толщина льдины h, а плотность льда ρл, плотность воды ρв.
Второй закон Ньютона в векторной форме для льдины, полностью погруженной в воду (она не тонет и не всплывает):
→FA+→Fтяж=0
Так как эти силы направлены в противоположные стороны:
FA = Fтяж
Архимедова сила, действующая только на льдину, равна:
FA = ρвVлg
Сила тяжести равна сумме масс льдины и груза:
Fтяж = (mл + mгр)g
Массу льдины можно выразить через произведение ее плотности на объем, равные произведению ее площади на толщину:
mл = ρлSh
Пример №3. Какую силу надо приложить, чтобы поднять под водой камень, масса которого 30 кг, а объем 12 000 см3?
12 000 куб. см = 0,012 куб. м
Чтобы поднять под водой камень, потребуется сила, равная разности силе тяжести и архимедовой силы, действующей на этот камень:
F = Fтяж – FA = mg – ρвVтg = 30∙10 – 1000∙0,012∙10 = 180 (Н)
Условия плавания тел
Если тело плавает на поверхности:
- Архимедова сила и сила тяжести, действующие на него, равны: FA= Fтяж.
- Сила тяжести равна: Fтяж = mg = ρтVтg.
- Архимедова сила равна: FA = ρжVп.ч.g.
- Взаимосвязь между объемом и высотой тела правильной формы: V = Sh.
Варианты условий задач на условия плавания тел
Сплошное тело объемом Vт плавает в воде. Причем под водой находится 3/4 его объема. Определите силу тяжести, действующую на тело. Плотность воды ρв. |
Второй закон Ньютона в векторной форме: →FA+→Fтяж=0 Отсюда (проекция на вертикальную ось): FA = Fтяж Fтяж = 3ρвVтg/4 |
Какая часть (в процентах) айсберга находится под водой? Плотность льда ρл, а воды ρв. |
Второй закон Ньютона в векторной форме: →FA+→Fтяж=0 Отсюда (проекция на вертикальную ось): FA = Fтяж Отсюда: ρлVлg = ρвVп.ч.g Ускорение свободного падения взаимоуничтожается. Чтобы найти погруженную часть айсберга в процентах, нужно: Vп.ч.Vл=ρлρв Найденное отношение остается умножить на 100%. |
Полое тело плотностью ρт плавает в воде, погрузившись на 1/5 своего объема. Найдите объем полости Vп, если объем тела Vт, а плотность воды ρв. |
Второй закон Ньютона в векторной форме: →FA+→Fтяж=0 Отсюда (проекция на вертикальную ось): FA = Fтяж Отсюда: ρвVп.ч.g = ρт(Vт – Vп)g Преобразовав выражение, получим: Vп=Vт(5ρт−ρв)5ρт |
Пример №4. Кубик массой 40 г и объемом 250 см3 плавает на поверхности воды. Найдите значение выталкивающей силы, действующей на кубик.
40 г = 0,04 кг
250 см3 = 250∙10–6 м3
Так как тело плавает, Архимедова сила будет равна по модулю силе тяжести, которая определяется формулой:
FA = Fтяж = 0,04∙10 = 0,4 (Н)