Гармонические колебания | теория по физике 🧲 колебания и волны

Гармоническими законами называют законы синуса и косинуса. Следовательно, гармоническими колебаниями называют те колебания, при которых координата тела изменяется синусоидально или косинусоидально.

Определение

Гармонические колебания — колебания, при которых координата тела изменяется с течением времени по гармоническому закону.

Ниже представлен график косинусоидальной функции. Обратите внимание, что косинус при возрастании аргумента от нуля сначала меняется медленно, а потом он все быстрее и быстрее приближается к нулю. Пройдя через него, его модуль снова быстро возрастает. Но по мере приближения к максимальному значению он снова замедляется. Точно так же меняются координаты свободно колеблющегося тела.

Важно! Гармоническими можно считать только те колебания, что совершаются грузом, закрепленном на пружине, или математическим маятником, отклоняемым на малый угол, при котором ускорение тела пропорционально его смещению.

Уравнение движения гармонических колебаний

Известно, что ускорение колеблющегося на пружине груза пропорционально его смещению от положения равновесия:

ax=km..x

Также известно, что ускорение есть вторая производная координаты. Следовательно, при свободных колебаниях координата изменяется со временем так, что вторая производная координаты по времени прямо пропорциональна самой координате и противоположна ей по знаку.

x″
=km..x

Вид уравнения гармонических колебаний зависит от начальных условий. Так, на характер колебательного движения влияет амплитуда, представляющая собой расстояние, на которое изначально было отклонено тело от положения равновесия. Амплитуда обозначается как xmax. Но нельзя просто считать, что x=xmaxcos.t или =xmaxsin.t, поскольку двойная производная от этих функций будет равна:

x″=xmaxcos.t=x

Видно, что в этом случае теряется величина km.., служащая постоянной для каждой колебательной системы. Чтобы получить ее во второй производной, нужно усложнить функцию до следующего вида:

x=xmaxcos.km..t

Тогда первая производная примет вид:

x′=km..xmaxsin.km..t

Вторая производная примет вид:

x″
=km..xmaxcos.km..t=km..x

Так как мы получили ровно такое же выражение, то описать свободные колебания можно уравнениями следующего вида:

x=xmaxsin.km..t

x=xmaxcos.km..t

Обозначим постоянную величину km.., зависящую от свойств системы, за ω0:

ω0=km..

Тогда получим:

x=xmaxsin.ω0t

x=xmaxcos.ω0t

Само уравнение движения, описывающего свободные колебания, примет вид:

x″= ω20x

Период и частота гармонических колебаний

Минимальный промежуток времени T, через который движение тела полностью повторяется, называют периодом колебания. Зная его, можно вычислить частоту колебаний, равную числу колебаний в единицу времени. Эти величины связаны между собой выражением:

ν=1T..

Через промежуток времени, равный периоду T и соответствующий изменению аргумента косинуса на ω0T, движение тела повторяется, и косинус принимает прежнее значение. Но из математики известно, что наименьший период косинуса равен 2π. Следовательно:

ω0T=2π

Отсюда:

ω0=2πT..=2πν

Таким образом, величина ω0 представляет собой число колебаний тела, но не за 1 секунду, а за 2π секунд. Эта величина называется циклической (круговой) частотой. А частоту свободных колебаний называют собственной частотой колебательной системы.

Зависимость частоты и периода свободных колебаний от свойств системы

Изначально за величину ω0 мы принимали постоянную, характеризующую свойства системы:

ω0=km..

Теперь мы выяснили, что циклическая частота связана с периодом и частотой колебаний. Следовательно, период и частота колебаний также зависят от свойств системы:

ω0=km..=2πT..=2πν

Отсюда период и частота колебаний соответственно равны:

T=2πω0..=2πmk..

ν=12π..km..

Вспомним, что свойства колебательной системы математического маятника определяются постоянной величиной gl... Следовательно, циклическая частота для него равна:

ω0=gl..

Отсюда период и частота колебаний математического маятника соответственно равны:

T=2πω0..=2πlg..

ν=12π..gl..

Эта формула была впервые получена и проверена на опыте голландским ученым Г. Гюйгенсом, современником И. Ньютона.

Период колебания возрастает с увеличением длины маятника. От массы маятника он не зависит. Это легко проверить на опыте с различными маятниками. Зависимость периода от ускорения свободного падения также легко прослеживается. Чем меньше величина g, тем больше период колебания маятника, и, следовательно, тем медленнее идут часы с маятником. Так, часы с маятником в виде груза на стержне отстанут в сутки почти на 3 с, если их поднять из подвала на верхний этаж Московского университета, который находится на высоте 200 м. И это только за счет уменьшения ускорения свободного падения с высотой.

Зависимость периода колебаний маятника от значения g используется на практике. Измеряя период колебания, можно легко измерить g. Ускорение свободного падения меняется с географической широтой. Но и на данной широте оно неодинаково, так как плотность земной коры неоднородна. В районах, где залегают более плотные породы, ускорение свободного падения принимает большие значения.

Пример №1. Сколько колебаний совершает математический маятник длиной 4,9 м за время 5 минут?

5 мин = 300 с

Искомое число колебаний равно отношению времени к периоду колебаний:

N=tT..

Период колебаний для математического маятника определяется формулой:

T=2πlg..

Тогда:

N=t2π..gl..=3002·3,14..9,84,9..68

Фаза колебаний

При заданной амплитуде гармонических колебаний координата колеблющегося тела в любой момент времени однозначно определяется аргументом косинуса или синуса, который равен ω0t. Обозначим его за ϕ и получим:

ϕ=ω0t

Величину ϕ, стоящую под знаком косинуса или синуса, называют фазой колебаний, описываемой этой функцией. Выражается фаза в угловых единицах — радианах (рад).

Фаза определяет значение не только координаты, но и других физических величин (к примеру, скорости и ускорения, которые также изменяются по гармоническому закону). Отсюда можно сделать вывод, что фаза определяет при заданной амплитуде состояния колебательной системы в любой момент времени.

Колебания с одинаковыми частотами и амплитудами могут отличаться друг от друга фазами. Так как ω0=2πT.., фаза определяется формулой:

ϕ=ω0t=2πtT..

tT.. — отношение, которое указывает, какая часть периода прошла от момента начала колебаний. Любому моменту времени, выраженному в долях периода, соответствует значение фазы, выраженное в радианах. К примеру:

Время, t (с) 0

T4..

T2..

3T4..

T

Фаза, ϕ (рад) 0

π2..

π

3π2..

2π

Можно изобразить на графике зависимость координаты колеблющейся точки не от времени, а от фазы. В этом случае графиком также будет являться косинусоида (или синусоида), но аргументом функции будет не время (период), а фаза, выражающаяся в радианах (см. рис.).

Синус от косинуса отличается только смещением аргумента на π2.. (см. рис. ниже). Поэтому для описания гармонических колебаний можно использовать как синусоидальный, так и косинусоидальный закон.

Выбор закона зависит от условий задачи. Если колебания начинаются с того, что тело выводят из положения равновесия и отпускают, удобнее пользоваться косинусоидальным законом, поскольку в начальный момент времени косинусоида показывает, что это тело отклонено максимально, а не находится в положении равновесия. Если для того чтобы начались колебания, совершают толчок, удобнее использовать синусоидальный закон, так как начальному моменту времени на синусоиде соответствует положение равновесия.

Колебания, совершаемые по закону синуса и косинуса, отличаются только фазой, которая смещена на значение, равное π2... Это значение называют сдвигом фаз, или их разностью. Поэтому косинусоидальная функция также может быть записана как:

x=xmaxcos.ω0t=xmaxsin.(ω0t+π2..)

Превращение энергии при гармонических колебаниях

Чтобы описать превращения энергии при гармонических колебаниях, условимся, что силой трения будем пренебрегать. Для описания обратимся к рисунку ниже.

Точке О на рисунке соответствует положение равновесия шарика. Если его оттянуть на расстояние xmax, равное амплитуде, пружина получит потенциальную энергию, которая примет в этом положении максимальное значение, равное:

Wp max=kx2max2..

Когда шарик отпускают, возникает сила упругости, под действием которой шарик устремляется влево. По мере уменьшения расстояния между точкой максимального отклонения и положением равновесия уменьшается и потенциальная энергия. Но в это время увеличивается кинетическая энергия шарика. Когда шарик проходит через положение равновесия в первый раз, его потенциальная энергия становится равной нулю, а кинетическая энергия обретает максимальное значение (скорость в этот момент времени тоже максимальна):

Wk max=mv2max2..

После прохождения точки О расстояние между шариком и положением равновесия снова увеличивается, и потенциальная энергия растет. Кинетическая же энергия при этом уменьшается. А в крайнем положении слева она становится равной нулю, в то время как потенциальная энергия снова примет максимальное значение.

Так как мы условились пренебрегать трением, данную колебательную систему можно считать изолированной. Тогда в ней должен соблюдаться закон сохранения энергии. Согласно ему, полная механическая энергия системы равна:

W=Wp+Wk=kx2x2..+mv2x2..=kx2max2..=mv2max2..

В действительности свободные колебания всегда затухают, так как в колебательной системе действует сила трения. И часть механической энергии рассеивается в виде тепла. Пример графика затухающих колебаний выглядит следующим образом:

Пример №2. Груз, прикрепленный к пружине, колеблется на горизонтальном гладком стержне. Найдите отношение кинетической энергии груза к его потенциальной энергии системы в момент, когда груз находится в точке, расположенной посередине между крайним положением и положением равновесия.

Так как груз находится посередине между крайним положением и положением равновесия, его координата равна половине амплитуды:

x=xmax2..

В это время потенциальная энергия груза будет равна:

Wp=kx22..=k(xmax2..)22..=kx2max8..

Согласно закону сохранения энергии, кинетическая энергия в это время равна:

Wk=WWp

Полная механическая энергия системы равна максимальной потенциальной энергии:

W=Wp max=kx2max2..

Тогда кинетическая энергия равна:

Wk=kx2max2..kx2max8..

Следовательно, отношение кинетической энергии к потенциальной будет выглядеть так:

WkWp..=kx2max2..kx2max8..kx2max8....=kx2max2..8kx2max..1=41=3

Резонанс

Самый простой способ возбуждения незатухающих колебаний состоит в том, что на систему воздействуют внешней периодической силой. Такие колебания называют вынужденными.

Работы силы над такой системой обеспечивает приток энергии к системе извне. Приток энергии не дает колебаниям затухнуть, несмотря на действие сил трения.

Особый интерес вызывают вынужденные колебаний в системе, способной совершать свободные колебания. Примером такой системы служат качели. Их не получится отклонить на большой угол всего лишь одним толчком. Если их толкать то в одну, то в другую сторону, тоже ничего не получится. Но если подталкивать качели всякий раз, как они сравниваются с нами, можно раскачать их очень сильно. При этом не нужно прикладывать большую силу, но на это понадобится время. Причем после каждого такого толчка амплитуда колебаний качелей будет увеличиваться до тех пор, пока не достигнет своего максимального значения. Такое явление называется резонансом.

Определение

Резонанс — резкое возрастание амплитуды вынужденных колебаний при совпадении частоты изменения внешней силы, действующей на систему, с частотой свободных колебаний.

Графически явление резонанса можно изобразить как резкий скачок графика вверх (см. рис. выше). Причем высота «зубца», или амплитуда колебаний, будет зависеть от величины сил трения. Чем больше сила трения, тем меньше при резонансе возрастает амплитуда вынужденных колебаний. Это можно продемонстрировать графиками на рисунке ниже. Графику 1 соответствует минимальное трение, графику 3 — максимальное.

На явлении резонанса основан принцип работы частотомера — устройства, предназначенного для измерения частоты переменного тока. Он состоит из набора упругих пластин, которые закреплены на одной планке. Каждая пластина обладает определенной собственной частотой колебаний, которая зависит от упругих свойств, длины и массы. Собственные колебания пластин известны. Под действием электромагнита планка, а вместе с ней и пластины совершают вынужденные колебания. Но лишь та пластина, собственная частота которой совпадает с частотой колебаний планки, будет иметь большую амплитуду колебаний. Таким образом, определяется частота переменного тока.

Пример №3. Автомобиль движется по неровной дороге, на которой расстояние между буграми равно приблизительно 8 м. Период свободных колебаний автомобиля на рессорах 1,5 с. При какой скорости автомобиля его колебания в вертикальной плоскости станут особенно заметными?

Колебания автомобиля в вертикальной плоскости будут заметны тогда, когда частота наезда на бугры сравняется с частотой свободных колебаний автомобиля на рессорах. Поскольку частота обратно пропорциональна периоду, можно сказать, что резонанс будет достигнут тогда, когда автомобиль будет наезжать на бугры каждые 1,5 секунды. Зная расстояние между буграми и время, можем вычислить скорость:

v=st..=81,5..5,33 (мс..)19,2(кмч..)

Текст: Алиса Никитина, 11.4k 👀

Задание EF17508

Смещение груза пружинного маятника меняется с течением времени по закону x=Acos.2πT..t, где период Т = 1 с. Через какое минимальное время, начиная с момента t = 0, потенциальная энергия маятника вернется к своему исходному значению?

Ответ:

а) 0,1 с

б) 0,2 с

в) 0,3 с

г) 0,5


Алгоритм решения

1.Определить исходное значение потенциальной энергии шарика.
2.Сделать рисунок и определить положение шарика в начальный момент времени.
3.Определить положение шарика в момент в момент времени, когда потенциальная энергия шарика снова примет исходное значение.
4.Определить, через какое время шарик примет такое положение.

Решение

Известно, что смещение маятника меняется по закону:

x=Acos.2πT..t

В начальный момент времени t = 0 смещение будет равно амплитуде, поскольку косинус нуля равен «1». Следовательно, исходное значение потенциальной энергии маятника равно:

Wp0=kA22..

Сделаем рисунок, обозначив за x0 положение равновесия системы. Тогда A и –A будут амплитудами (максимальными смещениями от положения равновесия).

Потенциальная энергия зависит только от модуля смещения, поэтому ее значение станет таким же, как в начальный момент времени, когда смещение достигнет максимального смещения с противоположной стороны (оно составит –A). В этом легко убедиться:

Wpt=k(A)22..=kA22..=Wp0

К этому моменту пройдет половина периода колебания, следовательно:

t=T2..=12..=0,5 (с)

Ответ: г

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17644

Груз изображённого на рисунке пружинного маятника совершает гармонические колебания между точками 1 и 3. Как меняются кинетическая энергия груза маятника, потенциальная энергия и жёсткость пружины при движении груза маятника от точки 2 к точке 3? Для каждой величины определите соответствующий характер её изменения:

1) увеличивается
2) уменьшается
3) не изменяется

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.


Алгоритм решения

1.Вспомнить, от чего зависит кинетическая энергия груза маятника, и установить, как она меняется при движении груза маятника от точки 2 к точке 3.
2.Вспомнить, от чего зависит потенциальная энергия пружины маятника, и установить, как она меняется в рассматриваемый промежуток времени.
3.Вспомнить, от чего зависит жёсткость пружины, и установить, как она меняется.

Решение

Точка 2 соответствует положению равновесия, тока 3 — максимальному смещению пружинного маятника. Кинетическая энергия груза маятника зависит от скорости его перемещения:

Wk=mv22..

Кинетическая энергия пружинного маятника максимально в положении равновесия и минимальная при максимальном смещении груза. Следовательно, на промежутке 2–3 она уменьшается.

Потенциальная энергия пружины маятника определяется формулой:

Wp=kx22..

Так как смещение во время перемещения из точки 2 в точку 3 растет, то потенциальная энергия пружины маятника увеличивается.

Жесткость пружины зависит от природы материала. Это постоянная величина, которая с течением времени не изменяется.

Ответ: 213

pазбирался: Алиса Никитина | обсудить разбор

Задание EF22760

Необходимо сделать нитяной маятник и с его помощью экспериментально определить ускорение свободного падения. Для этого школьник уже взял штатив с муфтой и лапкой, линейку и нить. Какие два предмета из приведённого ниже перечня оборудования необходимо дополнительно использовать для проведения этого эксперимента?

Ответ:

а) секундомер

б) динамометр

в) мензурка

г) электронные весы

д) алюминиевый шарик


Алгоритм решения

1.Записать формулу, которая связывает ускорение свободного падения с периодом колебаний маятника.
2.Определить, что не хватает для проведения эксперимента и выбрать недостающие предметы из списка.

Решение

Ускорение свободного падения с периодом колебаний маятника связывает формула:

T=2πlg..

Следовательно, нужно значит не только длину нити маятника, но и период колебаний. Измерить его можно с помощью секундомера. А чтобы получить сам маятник, к нити нужно будет привязать массивный шарик. Например, алюминиевый.

Ответ: а, д

pазбирался: Алиса Никитина | обсудить разбор

ЕГЭ по физике

Вся теория

Механическое движение и его характеристикиРавномерное прямолинейное движениеОтносительность механического движенияНеравномерное движение и средняя скоростьУскорение при равноускоренном прямолинейном движенииСкорость при равноускоренном прямолинейном движенииПеремещение и путь при равноускоренном прямолинейном движенииУравнение координаты при равноускоренном прямолинейном движенииДвижение тела с ускорением свободного паденияДвижение тела, брошенного горизонтальноДвижение тела, брошенного под углом к горизонтуДвижение по окружности с постоянной по модулю скоростьюЗаконы Ньютона. Динамика.Гравитационные силы. Закон всемирного тяготения.Сила упругости и закон ГукаСила тренияВес телаПрименение законов НьютонаДвижение связанных телДинамика движения по окружности с постоянной по модулю скоростьюИмпульс тела, закон сохранения импульсаМеханическая работа и мощностьМеханическая энергия и ее видыЗакон сохранения механической энергииПрименение закона сохранения энергииМомент силы и правило моментовПравило моментов при решении задачДавление твердого телаДавление в жидкостях и газах. Закон Паскаля.Сообщающиеся сосудыАрхимедова силаОсновные положения МКТ и агрегатные состояния веществаОсновное уравнение МКТ идеального газаУравнение состояния идеального газаОбъединенный газовый закон и изопроцессыЗакон ДальтонаИспарение и конденсация, влажность воздухаВнутренняя энергия вещества и способы ее измененияФазовые переходы и уравнение теплового балансаВнутренняя энергия и работа идеального газаПервое начало термодинамикиТепловые машины и второе начало термодинамикиЭлектрический заряд. Закон КулонаЭлектрическое поле и его характеристикиЭлектростатическое поле точечного заряда и заряженной сферыПринцип суперпозиции сил и полейОднородное электростатическое поле и его работаКонденсаторыЭлектрический ток и закон ОмаАмперметр и вольтметр. Правила включения.Последовательное и параллельное соединениеПолная цепьРабота и мощность электрического токаЭлектрический ток в жидкостях, в полупроводниках, в вакууме, в газахМагнитное поле и его характеристикиПринцип суперпозиции магнитных полейСила АмпераСила ЛоренцаЭлектромагнитная индукция и магнитный потокПравило ЛенцаЗакон электромагнитной индукцииСамоиндукцияЭнергия магнитного поля токаМеханические колебанияЭлектромагнитные колебанияПеременный электрический токКонденсатор, катушка и резонанс в цепи переменного токаМеханические волныМеханические волны в сплошных средах. Звук.Электромагнитные волныCвет. Скорость света. Элементы теории относительности.Отражение и преломление света. Законы геометрической оптики.Линза. Виды линз. Фокусное расстояние.Построение изображения в линзеФормула тонкой линзыДисперсия светаИнтерференция светаДифракция светаЛинейчатые спектрыФотоэффектФотоныПланетарная модель атомаПостулаты БораРадиоактивностьНуклонная модель атомаЯдерные реакцииЭлементы астрофизики