Постулаты Бора | теория по физике 🧲 квантовая физика

Планетарная модель атома, предложенная Резерфордом, – это попытка применения классических представлений о движении тел к явлениям атомных масштабов. Она оказалась несостоятельной. Классический атом неустойчив. Электроны, движущиеся по орбите с ускорением, должны неизбежно упасть на ядро, растратив всю энергию на излучение электромагнитных волн (см. рисунок ниже). При этом спектр излучения атома должен быть непрерывным, а не линейчатым. Это никак не вязалось с тем, что ученые наблюдали на практике.

Следующий шаг в развитии представлений об устройстве атома в 1913 году сделал выдающийся датский физик Н. Бор. Проанализировав всю совокупность опытных фактов, Бор пришел к выводу, что при описании поведения атомных систем следует отказаться от многих представлений классической физики. Он сформулировал постулаты, которым должна удовлетворять новая теория о строении атомов.

Квантовые постулаты Бора – предположения (утверждения), сделанные Н. Бором для того, чтобы модель строения атома Резерфорда соответствовала реальному поведению атомов водорода.

Первый постулат Бора

Первый постулат Бора также носит название постулата стационарных состояний:

Атомная система может находиться только в стационарных, или квантовых, состояниях, каждому из которых соответствует определенная энергия En. В стационарном состоянии атом не излучает электромагнитные волны.

Этот постулат находится в явном противоречии с классической механикой, согласно которой энергия движущегося электрона может быть любой. Он находится в противоречии и с электродинамикой, так как допускает возможность ускоренного движения электронов без излучения электромагнитных волн.

Согласно первому постулату Бора, атом характеризуется системой энергетических уровней, каждый из которых соответствует определенному стационарному состоянию (см. рисунок ниже). Механическая энергия электрона, движущегося по замкнутой траектории вокруг положительно заряженного ядра, отрицательна. Поэтому всем стационарным состояниям соответствуют значения энергии En < 0. При En ≥ 0 электрон удаляется от ядра, т. е. происходит ионизация. Величина |E1| называется энергией ионизации.

Картинки по запросу "постулаты бора"

Второй постулат Бора

Второй постулат Бора также носит название правила частот:

Излучение света происходит при переходе атома из стационарного состояния с большей энергией Ek в стационарное состояние с меньшей энергией En. Энергия излученного фотона равна разности энергий стационарных состояний.

Разность энергий стационарных состояний можно вычислить по формуле:

E=hν

hνkn=EkEn

Внимание! В квантовой физике энергию принято измерять не в Джоулях, а в электрон-вольтах, обозначаемых «эВ». 1 эВ равен энергии, приобретаемой электроном при прохождении разницы потенциалов 1 В. 1 эВ = 1,6∙10–19 Дж.

Отсюда можно выразить частоту излучения:

νkn=EkEnh..

Картинки по запросу "излучение фотона"

Наименьшей энергии En соответствует состояние атома, которое называется основным, а наибольшей энергии Ekвозбужденное состояние атома. В основном состоянии электрон может находиться неограниченно долго, а в остальных состояниях не более 10-8 с.

Если атом переходит из стационарного состояния с большей энергией в стационарное состояние с меньшей энергией (Ek > En), происходит излучение фотона. Если атом переходит из стационарного состояния с меньшей энергией в стационарное состояние с большей энергией (Ek < En), происходит поглощение фотона.

Картинки по запросу "излучение фотона"

Второй постулат Бора позволил объяснить линейчатую структуру атомных спектров. Ведь атом, как оказалось, может поглощать и излучать свет только определенных частот.

Этот постулат Бора также противоречит электродинамике Максвелла, так как частота излучения определяется только изменением энергии атома и никак не зависит от характера движения электрона.

Пример №1. Определите длину волны света, испускаемого атомом водорода при его переходе из стационарного состояния с энергией E4 = –0,85 эВ (k = 4) в состояние с энергией E2 = –3,4 эВ (n = 2).

Длина волны определяется формулой:

λ=cν..

Частоту найдем по формуле:

νkn=EkEnh..

Следовательно, длина волны равна:

Теория Бора при описании поведения атомных систем не отвергла полностью законы классической физики. В ней сохранились представления об орбитальном движении электронов в кулоновском поле ядра. Классическая ядерная модель атома Резерфорда в теории Бора была дополнена идеей о квантовании электронных орбит. Поэтому теорию Бора иногда называют полуклассической.

Текст: Алиса Никитина, 4.6k 👀

Задание ЕГЭ-Ф-ДВ2023-19

На рисунке изображена упрощённая диаграмма нижних энергетических уровней атома. Нумерованными стрелками отмечены некоторые возможные переходы атома между этими уровнями. Какие из этих четырёх переходов связаны с излучением света с наибольшей длиной волны и поглощением света с наименьшей энергией? Установите соответствие между процессами поглощения и излучения света и энергетическими переходами атома, указанными стрелками. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

Алгоритм решения:

1.Записать второй постулат Бора.
2.Установить зависимость между длиной излученной волны и энергией излученного фотона.
3.Опираясь на второй постулат Бора и установленную зависимость, установить соответствие между процессами поглощения и излучения света и энергетическими переходами атома, указанными стрелками на рисунке.

Решение:

Второй постулат Бора звучит следующим образом:

Излучение света происходит при переходе атома из стационарного состояния с большей энергией Ek в стационарное состояние с меньшей энергией En. Энергия излученного фотона равна разности энергий стационарных состояний.

Причем разность стационарных энергий определяется формулой:

Длина волны определяется формулой:

Следовательно:

Отсюда видно, что длина волны обратна пропорциональна разности стационарных энергий. Следовательно, чем больше разность, тем меньше длина волны. И наоборот.

Когда атом переходит в более высокий энергетический уровень, он поглощает свет. Когда переходит в более низкий энергетический уровень — он излучает его.

Под «А» необходимо найти рисунок, соответствующий излучению с наибольшей длиной волны. Следовательно, нужно найти рисунок с переходом на более низкий энергетический уровень с минимальной энергией. Этому соответствует рисунок 1.

Под «Б» необходимо найти рисунок, соответствующий поглощению с наименьшей энергией. Следовательно, нужно найти рисунок с переходом на более высокий энергетический уровень с минимальной энергией. Этому соответствует рисунок 3.

Правильная последовательность цифр в ответе — 13.

Ответ: 13

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17570

На рисунке представлен фрагмент диаграммы энергетических уровней атома. Какой из отмеченных стрелками переходов между энергетическими уровнями сопровождается излучением фотона с максимальной энергией?

Ответ:

а) с уровня 1 на уровень 5

б) с уровня 5 на уровень 2

в) с уровня 5 на уровень 1

г) с уровня 2 на уровень 1


Алгоритм решения

  1. Сформулировать второй постулат Бора.
  2. Определить, при переходе с какого на какой уровень выделяется фотон с максимальной энергией.

Решение

Излучение света происходит при переходе атома из стационарного состояния с большей энергией Ek в стационарное состояние с меньшей энергией En. Энергия излученного фотона равна разности энергий стационарных состояний.

Причем чем на более высоком уровне находится электрон, тем с более высокой энергией фотон он испускает при переходе на 1 уровень. Поэтому на рисунке нам подходит переход с уровня 5 на уровень 1.

Ответ: в

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17650

В сосуде находится разреженный атомарный водород. Атом водорода в основном состоянии (Е1 = – 13,6 эВ) поглощает фотон частотой 3,7⋅1015 Гц. С какой скоростью υ движется вдали от ядра электрон, вылетевший из атома в результате ионизации? Энергией теплового движения атомов водорода пренебречь.

Ответ:

а) 80 км/с

б) 380 км/с

в) 760 км/с

г) 1530 км/с


Алгоритм решения

1.Записать исходные данные.
2.Записать второй постулат Бора в математической форме.
3.Выполнить решение в общем виде.
4.Подставить известные данные и вычислить искомую величину.

Решение

Запишем исходные данные:

 Энергия стационарного состояния: En = –13,6 эВ.
 Частота поглощенного фотона: νkn = 3,7∙1015 Гц.

Запишем второй постулат Бора в математической форме:

hνkn=EkEn

Скорость электрона мы можем посчитать, если примем энергию электрона в возбужденном состоянии за его кинетическую энергию. Тогда формула примет вид:

hνkn=mv22..En

Сделаем несколько преобразований, чтобы выразить скорость электрона:

mv22..=hνkn+En

v2=2(hνkn+En)m..

v=2(hνkn+En)m..

Учтем, что:

 Масса электрона: m = 9,1∙10–31 кг.
 1 эВ = 1,6∙10–19 Дж.

Тогда:

Ответ: в

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17726

Покоящийся атом излучает фотон с энергией 16,32·10–19 Дж в результате перехода электрона из возбуждённого состояния в основное. Атом в результате отдачи начинает двигаться поступательно в противоположном направлении с кинетической энергией 8,81·10–27 Дж. Найдите массу атома. Скорость атома считать малой по сравнению со скоростью света.


Алгоритм решения

1.Записать исходные данные.
2.Записать закон сохранения импульса.
3.Выполнить решение в общем виде.
4.Подставить известные данные и вычислить искомую величину.

Решение

Запишем исходные данные:

 Энергия излученного фотона: Eф = 16,32∙10–19 Дж.
 Кинетическая энергия атома после излучения фотона: Eа = 8,81∙10–27 Дж.

Так как до излучения фотона атом покоился, то его импульс был равен нулю. Поэтому после излучения фотона суммарный импульс согласно закону сохранения импульса тоже должен быть равен нулю. Поэтому импульс атома равен по модулю импульсу излученного фотона:

pа=pф

Импульс тела и его кинетическая энергия — связанные величины. Но скорость атома много меньше скорости света. Поэтому для атома связь импульса с кинетической энергией будет описываться нерелятивистским выражением:

Eа=p2а2mа..

Отсюда импульс, обретенный атомом, равен:

pа=2mаEа

Фотон двигается со скоростью света, и его импульс может быть выражен из следующей его связи с энергией:

Eф=pфc

Тогда импульс фотона равен:

pф=Eфc..

Приравняем импульсы атома и фотона:

2mаEа=Eфc..

Возведем обе части выражения в квадрат, выразим и посчитаем массу атома:

2mаEа=E2фc2..

pазбирался: Алиса Никитина | обсудить разбор

ЕГЭ по физике

Вся теория

Механическое движение и его характеристикиРавномерное прямолинейное движениеОтносительность механического движенияНеравномерное движение и средняя скоростьУскорение при равноускоренном прямолинейном движенииСкорость при равноускоренном прямолинейном движенииПеремещение и путь при равноускоренном прямолинейном движенииУравнение координаты при равноускоренном прямолинейном движенииДвижение тела с ускорением свободного паденияДвижение тела, брошенного горизонтальноДвижение тела, брошенного под углом к горизонтуДвижение по окружности с постоянной по модулю скоростьюЗаконы Ньютона. Динамика.Гравитационные силы. Закон всемирного тяготения.Сила упругости и закон ГукаСила тренияВес телаПрименение законов НьютонаДвижение связанных телДинамика движения по окружности с постоянной по модулю скоростьюИмпульс тела, закон сохранения импульсаМеханическая работа и мощностьМеханическая энергия и ее видыЗакон сохранения механической энергииПрименение закона сохранения энергииМомент силы и правило моментовПравило моментов при решении задачДавление твердого телаДавление в жидкостях и газах. Закон Паскаля.Сообщающиеся сосудыАрхимедова силаОсновные положения МКТ и агрегатные состояния веществаОсновное уравнение МКТ идеального газаУравнение состояния идеального газаОбъединенный газовый закон и изопроцессыЗакон ДальтонаИспарение и конденсация, влажность воздухаВнутренняя энергия вещества и способы ее измененияФазовые переходы и уравнение теплового балансаВнутренняя энергия и работа идеального газаПервое начало термодинамикиТепловые машины и второе начало термодинамикиЭлектрический заряд. Закон КулонаЭлектрическое поле и его характеристикиЭлектростатическое поле точечного заряда и заряженной сферыПринцип суперпозиции сил и полейОднородное электростатическое поле и его работаКонденсаторыЭлектрический ток и закон ОмаАмперметр и вольтметр. Правила включения.Последовательное и параллельное соединениеПолная цепьРабота и мощность электрического токаЭлектрический ток в жидкостях, в полупроводниках, в вакууме, в газахМагнитное поле и его характеристикиПринцип суперпозиции магнитных полейСила АмпераСила ЛоренцаЭлектромагнитная индукция и магнитный потокПравило ЛенцаЗакон электромагнитной индукцииСамоиндукцияЭнергия магнитного поля токаМеханические колебанияГармонические колебанияЭлектромагнитные колебанияПеременный электрический токКонденсатор, катушка и резонанс в цепи переменного токаМеханические волныМеханические волны в сплошных средах. Звук.Электромагнитные волныCвет. Скорость света. Элементы теории относительности.Отражение и преломление света. Законы геометрической оптики.Линза. Виды линз. Фокусное расстояние.Построение изображения в линзеФормула тонкой линзыДисперсия светаИнтерференция светаДифракция светаЛинейчатые спектрыФотоэффектФотоныПланетарная модель атомаРадиоактивностьНуклонная модель атомаЯдерные реакцииЭлементы астрофизики