Самоиндукция | теория по физике 🧲 магнетизм

Если по катушке идет переменный ток, то магнитный поток, пронизывающий катушку, меняется. Поэтому возникает ЭДС индукции в том же самом проводнике, по которому идет переменный ток. Это явление называют самоиндукцией.

При самоиндукции проводящий контур выполняет двойную роль. С одной стороны, переменный ток в проводнике вызывает появление магнитного потока через поверхность, ограниченную контуром. А так как магнитный поток изменяется со временем, появляется ЭДС индукции εis. По правилу Ленца в момент нарастания тока напряженность вихревого электрического поля направлена против тока. Следовательно, в этот момент вихревое поле препятствует нарастанию тока. Наоборот, в момент уменьшения тока вихревое поле поддерживает его.

Явление самоиндукции можно наблюдать в простых опытах. На рисунке представлена схема параллельного соединения двух одинаковых ламп. Одну из них подключают к источнику через резистор R, а другую — последовательно с катушкой L, снабженной железным сердечником.

При замыкании ключа первая лампа вспыхивает практически сразу, а вторая — с заметным запозданием. ЭДС самоиндукции в цепи этой лампы велика, и сила тока не сразу достигает своего максимального значения (см. график ниже).

Появление ЭДС самоиндукции при размыкании можно наблюдать в опыте с цепью, схематически показанной на следующем рисунке. При размыкании ключа в катушке L возникает ЭДС самоиндукции, поддерживающая первоначальный ток. В результате в момент размыкания через гальванометр идет ток (цветная стрелка), направленный против начального тока до размыкания (черная стрелка). Сила тока при размыкании цепи может превышать силу тока, проходящего через гальванометр при замкнутом ключе. Это означает, что ЭДС самоиндукции εis больше ЭДС ε батареи элементов.

Самоиндукция и инерция

Явление самоиндукции проще понять, проведя аналогию с инерцией в механике. Инерция приводит к тому, что под действием силы тело не мгновенно приобретает скорость, а постепенно. Тело нельзя мгновенно затормозить, как бы велика ни была тормозящая сила. Точно так же за счет самоиндукции при замыкании цепи сила тока не сразу приобретает определенное значение, а нарастает постепенно. Выключая источник, мы не прекращаем ток сразу. Самоиндукция его поддерживает некоторое время, несмотря на сопротивление цепи.

Чтобы увеличить скорость тела, согласно законам механики нужно совершить работу. При торможении тело само совершает работу. Точно так же для создания тока нужно совершить работу против вихревого электрического поля, а при исчезновении тока это поле совершает положительную работу.

Индуктивность

Модуль вектора индукции В магнитного поля, создаваемого током, пропорционален силе тока. Так как магнитный поток Ф пропорционален В, то Ф ~ В~ I. Это дает право утверждать, что:

Φ=LI

L — коэффициент пропорциональности между током в проводящем контуре и магнитным потоком, пронизывающим этот контур. Эту величину также называют индуктивностью контура, или его коэффициентом самоиндукции.

Применив закон электромагнитной индукции, а также считая, что форма контура остается неизменной, и поток меняется только за счет изменения силы тока, получим:

εis=ΔΦΔt..=LΔIΔt..

Эта формула позволяет дать такую формулировку L, которая точно отражает суть этой величины.

Определение

Индуктивность — это физическая величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1 А за 1 с.

Единица измерения индуктивности — генри (Гн). Индуктивность проводника равна 1 Гн, если в нем при изменении силы тока на 1 А за 1 с возникает ЭДС самоиндукции в 1 В.

Индуктивность подобна электроемкости. Она зависит от геометрических факторов: размеров проводника и его формы, но не зависит непосредственно от силы тока в проводнике. Кроме геометрии проводника, индуктивность зависит от магнитных свойств среды, в которой находится проводник.

Пример №1. При равномерном изменении силы тока в катушке на 10 А за 0,02 с в ней возникает ЭДС самоиндукции, равная 200 В. Чему равна индуктивность катушки?

Выразим индуктивность из формулы для ЭДС самоиндукции:

L=ΔtεisΔI..=0,02·20010..=0,4 (Гн)

Знак «минус» означает, что ЭДС самоиндукции действует так, что индукционный ток препятствует изменению магнитного потока. Поэтому само значение индуктивности мы можем принять за модуль полученного результата — 0,4 Гн.

Текст: Алиса Никитина, 7.1k 👀

Задание ЕГЭ-Ф-ДВ2023-14

Конденсатор, заряженный до разности потенциалов U0, в первый раз подключили к катушке с индуктивностью L1 = L, а во второй — к катушке с индуктивностью L2 = 5L. В обоих случаях в получившемся контуре возникли незатухающие электромагнитные колебания. Каково отношение максимальных значений энергии магнитного поля катушки W2max/ W1max при этих колебаниях?

Алгоритм решения:

  1. Записать исходные данные.
  2. Записать формулу, характеризующую максимальную энергию магнитного поля катушки.
  3. Определить отношение максимальных энергий магнитного поля катушки 2 к 1.

Решение:

Запишем исходные данные:

  • Разность потенциалов конденсатора: U1 = U2 = U0.
  • Индуктивность катушки 1: L1 = L.
  • Индуктивность катушки 2: L2 = 5L.

Максимальная энергия магнитного поля катушки, включенной в цепь с конденсатором, равна половине произведения индуктивности катушки и квадрата максимальной силы тока:

Она также равна максимальной энергии электрического поля конденсатора:

Максимальная энергия магнитного поля катушки в случае 1 равна:

Максимальная энергия магнитного поля катушки в случае 2 равна:

В обоих случаях эта энергия ограничивается энергией электрического поля конденсатора:

Следовательно:

Отсюда следует, что отношение:

Ответ: 1

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17686

Катушка, обладающая индуктивностью L, соединена с источником питания с ЭДС ε и двумя одинаковыми резисторами R. Электрическая схема соединения показана на рис. 1. В начальный момент ключ в цепи разомкнут.

В момент времени t=0 ключ замыкают, что приводит к изменениям силы тока, регистрируемым амперметром, как показано на рис. 2. Основываясь на известных физических законах, объясните, почему при замыкании ключа сила тока плавно увеличивается до некоторого нового значения – I1. Определите значение силы тока I1. Внутренним сопротивлением источника тока пренебречь.


Алгоритм решения

1.Установить, какими физическими законами можно описать эксперимент.
2.Описать, что происходит до замыкания ключа.
3.Определить, что произойдет после замыкания ключа.
4.Вычислить силу тока в катушке.

Решение

На рисунке 1 изображена схема, в которой катушка индуктивности подключена последовательно к двум параллельно соединенным резистором и источнику тока. Амперметр тоже соединен с катушкой последовательно, следовательно, он определяет силу тока, проходящую через нее.

Для описания процесса можно подходит закон Ома для полной цепи и формула ЭДС самоиндукции, которая будет возникать при изменении силы тока в цепи:

IRобщ=ε+εis

εis=LΔIΔt..

До замыкания ключа общее сопротивление цепи равно сопротивлению одного резистора — R. Так как ток в этом случае постоянный, ЭДС самоиндукции отсутствует. Тогда закон Ома принимает вид:

I0=εR..

Когда ключ замыкается, сопротивление в цепи уменьшается вдвое, так как подключается второй резистор:

1Rобщ..=1R..+1R..=2R..

Rобщ=0,5R

Изменение сопротивления в цепи вызывает изменение силы тока. В результате возникает ЭДС самоиндукции. Она препятствует изменению силы тока через катушку в соответствии с правилом Ленца. Поэтому сила тока через катушку при замыкании ключа не претерпевает скачка.

Постепенно ЭДС самоиндукции уменьшается до нуля, а сила тока через катушку плавно возрастает до значения:

I1=ε0,5R..=2I0

На рисунке 2 начальная сила тока равна 3 А. Следовательно:

I1=3·2=6 (А)

Ответ: 6

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17724

В электрической цепи, показанной на рисунке, ЭДС и внутреннее сопротивление источника тока соответственно равны 12 В и 1 Ом, ёмкость конденсатора 2 мФ, индуктивность катушки 36 мГн и сопротивление лампы 5 Ом. В начальный момент времени ключ К замкнут. Какая энергия выделится в лампе после размыкания ключа? Сопротивлением катушки и проводов пренебречь. Ответ записать в мДж.


Алгоритм решения

1.Записать исходные данные и перевести единицы измерения в СИ.
2.Установить величину электромагнитного поля катушки и электрического поля конденсатора.
3.Выполнить решение задачи в общем виде.
4.Подставить неизвестные данные и вычислить искомую величину.

Решение

Запишем исходные данные:

 ЭДС источника тока: ε = 12 В.
 Сопротивление источника тока: r = 1 Ом.
 Емкость конденсатора: C = 2 мФ.
 Индуктивность катушки: L = 36 мГн.
 Сопротивление лампы: R = 5 Ом.

2 мФ = 2∙10–3 Ф

36 мГн = 36∙10–3 Гн

Пока ключ замкнут, через катушку L течёт ток определяемый внутренним сопротивлением источника и сопротивлением лампочки. Его можно вычислить, используя закон Ома для полной цепи:

I=εR+r..

При этом конденсатор будет заряжен до напряжения U, которое определяется законом Ома для участка цепи:

U=IR

Подставив в это выражение закон Ома для полной цепи, получим:

U=εRR+r..

Энергия электрического поля в конденсаторе определяется формулой:

Wкон=CU22..=C2..(εRR+r..)2

Энергия электромагнитного поля в катушке определяется формулой:

Wкат=LI22..=L2..(εR+r..)2

После размыкания ключа начинаются затухающие электромагнитные колебания, и вся энергия, запасённая в конденсаторе и катушке, выделится на лампе:

E=Wкон+Wкат=C2..(εRR+r..)2+L2..(εR+r..)2

Ответ: 172

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18478

Катушка индуктивности подключена к источнику тока с пренебрежимо малым внутренним сопротивлением через резистор Ом (см. рисунок). В момент ключ К замыкают. Значения силы тока в цепи, измеренные в последовательные моменты времени с точностью 0,01 А, представлены в таблице.

Выберите два верных утверждения о процессах, происходящих в цепи.

Ответ:

  1. Напряжение на резисторе в момент времени t= 1,0 c равно 1,9 В.
  2. Энергия катушки максимальна в момент времени t= 0 c.
  3. ЭДС источника тока равна 18 В.
  4. Напряжение на катушке максимально в момент времени t= 6,0 c.
  5. Модуль ЭДС самоиндукции катушки в момент времени t = 2,0 с равен 2,4В.

Алгоритм решения

1.Проверить истинность каждого утверждения.
2.Выбрать 2 верных утверждения.

Решение

Согласно утверждению 1, напряжение на резисторе в момент времени t = 1,0 c равно 1,9 В. Так как сила тока еще не установилась, а сопротивление источника тока пренебрежимо мало, вычислить напряжение на резисторе можно с помощью закона Ома для полной цепи:

I=εεisR..

U=εεis=IR=0,19·60=11,4 (В)

Следовательно, утверждение 1 — неверно.

Согласно утверждению 2, энергия катушки максимальна в момент времени t = 0 c. Энергия катушки определяется формулой:

Wкат=LI22..

Так как сила тока в начальный момент времени равна нулю, то энергия катушки в это время тоже нулевая.

Следовательно, утверждение 2 — неверно.

Согласно утверждению 3, ЭДС источника тока равна 18 В. Вычислить ЭДС источника тока можно, используя закон Ома для полной цепи в момент, когда сила тока в цепи достигнет максимального значения. В этом случае ЭДС самоиндукции будет равна 0. Тогда:

I=εR..

ε=IR=0,3·60=18 (В).

Это действительно так. Следовательно, утверждение 3 — верно.

Согласно утверждению 4, напряжение на катушке максимально в момент времени t = 6,0 c. Напряжение на катушке равно разности напряжения ЭДС источника тока и напряжения на резисторе (так как они соединены последовательно):

U=εIR

Так как значение силы тока в момент времени t = 6,0 с максимально, то напряжение на катушке. Следовательно, утверждение 4 — неверно.

Согласно утверждению 5, модуль ЭДС самоиндукции катушки в момент времени t = 2,0 с равен 2,4В. Проверяя истинность утверждения 3, мы выяснили, что ЭДС источника тока равна 18 В. Следовательно, ЭДС самоиндукции равна:

εis=εIR

Для вычислений используем значения из таблицы для момента времени t = 2,0 с:

εis=180,26·60=2,4 (В)

Следовательно, утверждение 5 — верно.

Ответ: 35

pазбирался: Алиса Никитина | обсудить разбор

ЕГЭ по физике

Вся теория

Механическое движение и его характеристикиРавномерное прямолинейное движениеОтносительность механического движенияНеравномерное движение и средняя скоростьУскорение при равноускоренном прямолинейном движенииСкорость при равноускоренном прямолинейном движенииПеремещение и путь при равноускоренном прямолинейном движенииУравнение координаты при равноускоренном прямолинейном движенииДвижение тела с ускорением свободного паденияДвижение тела, брошенного горизонтальноДвижение тела, брошенного под углом к горизонтуДвижение по окружности с постоянной по модулю скоростьюЗаконы Ньютона. Динамика.Гравитационные силы. Закон всемирного тяготения.Сила упругости и закон ГукаСила тренияВес телаПрименение законов НьютонаДвижение связанных телДинамика движения по окружности с постоянной по модулю скоростьюИмпульс тела, закон сохранения импульсаМеханическая работа и мощностьМеханическая энергия и ее видыЗакон сохранения механической энергииПрименение закона сохранения энергииМомент силы и правило моментовПравило моментов при решении задачДавление твердого телаДавление в жидкостях и газах. Закон Паскаля.Сообщающиеся сосудыАрхимедова силаОсновные положения МКТ и агрегатные состояния веществаОсновное уравнение МКТ идеального газаУравнение состояния идеального газаОбъединенный газовый закон и изопроцессыЗакон ДальтонаИспарение и конденсация, влажность воздухаВнутренняя энергия вещества и способы ее измененияФазовые переходы и уравнение теплового балансаВнутренняя энергия и работа идеального газаПервое начало термодинамикиТепловые машины и второе начало термодинамикиЭлектрический заряд. Закон КулонаЭлектрическое поле и его характеристикиЭлектростатическое поле точечного заряда и заряженной сферыПринцип суперпозиции сил и полейОднородное электростатическое поле и его работаКонденсаторыЭлектрический ток и закон ОмаАмперметр и вольтметр. Правила включения.Последовательное и параллельное соединениеПолная цепьРабота и мощность электрического токаЭлектрический ток в жидкостях, в полупроводниках, в вакууме, в газахМагнитное поле и его характеристикиПринцип суперпозиции магнитных полейСила АмпераСила ЛоренцаЭлектромагнитная индукция и магнитный потокПравило ЛенцаЗакон электромагнитной индукцииЭнергия магнитного поля токаМеханические колебанияГармонические колебанияЭлектромагнитные колебанияПеременный электрический токКонденсатор, катушка и резонанс в цепи переменного токаМеханические волныМеханические волны в сплошных средах. Звук.Электромагнитные волныCвет. Скорость света. Элементы теории относительности.Отражение и преломление света. Законы геометрической оптики.Линза. Виды линз. Фокусное расстояние.Построение изображения в линзеФормула тонкой линзыДисперсия светаИнтерференция светаДифракция светаЛинейчатые спектрыФотоэффектФотоныПланетарная модель атомаПостулаты БораРадиоактивностьНуклонная модель атомаЯдерные реакцииЭлементы астрофизики